Supporting information

Silver nanowires intercalating $Ti_3C_2T_x$ MXene composite films with excellent

flexibility for electromagnetic interference shielding

Miao Miao^a, Ruiting Liu^b, Sineenat Thaiboonrod^c, Liyi Shi^a, Shaomei Cao^a, Jianfeng

Zhang^b, Jianhui Fang^a, Xin Feng^a*

Fig. S1 Size dispersion (a) and AFM image (b) of $Ti_3C_2T_x$ sheets. Size dispersion was calculated from TEM image.

Fig. S2 Surface and cross-sectional SEM images of AgNWs-NC (a,c) and Ti_3C_2 -NC (b,d) hybrid films, respectively.

Fig. S3 SEM images of top surfaces and fracture surfaces for (a, b) TN0.125A, (c, d) TN0.25A and (e, f) TN0.5A.

Fig. S4 EMI SE of TN0.167A, Ti_3C_2 -NC and AgNWs-NC hybrid films in the frequency range of 8.2-12.4 GHz.

Fig. S5 SE_R/SE_A and SE_R/SE_T values of pure Ti_3C_2 and hybrid films as the ratio of NC-to- Ti_3C_2 .

Commla	Meteriale	Content	Not	Thickness	Density	EMI SE	SSE	SSE/t	Dof
Sample	Waterials	(wt%)	Iviauix	(cm)	(g·cm ⁻³)	(dB)	$(cm^{3} \cdot g^{-1})$	$(cm^{2} \cdot g^{-1})$	
1	Ni fiber/PES	7*	PES	0.285	1.87	58	31	108.7	1
2	Ni filaments/PES	7*	PES	0.285	1.85	87	47	164.9	1
3	copper	Bulk	/	0.31	9	90	10	32.3	1
4	CuNi-CNT foam	Bulk	/	0.15	0.23	54.6	237	1580	2
5	SWCNT/PS	7	PS	0.12	0.56	18.5	33	275	3
6	MWCNT/WPU	76.2	WPU	0.1	0.039	21.1	541	5410	4
7	CNT sponge	Bulk	/	0.238	0.02	22	1100	4622	5
8	CNT/Epoxy	0.66	Epoxy	0.2	0.975	33	33.84	169.2	6
9	CNT/Cellulose	40	cellulose	0.015	1.7	35	20.586	1372.4	7
10	RGO foam	Bulk	/	0.03	0.06	25.2	420	14000	8
11	Graphene paper	Bulk	/	0.005	0.81	62	76.5	15309	9
12	Fe ₃ O ₄ /Graphene paper	Bulk	/	0.03	0.78	24	30.76	1025	10
13	Graphene/PDMS foam	0.8	PDMS	0.1	0.06	19.98	333	3330	11
14	Graphene foam/PEDOT:PSS	40	PEDOT: PSS	0.15	0.0198	69.1	3124	20827	12
15	CNT/graphene foam	Bulk	/	0.16	0.0058	38.4	6620	41375	13
16	Ti ₃ C ₂ foam	Bulk	/	0.006	0.22	70	318	53030	14
17	Ti ₃ C ₂ /SA	90	SA	0.0008	2.317	57	24.6	30830	15
18	Ti ₃ C ₂	Bulk	/	0.0011	2.394	68	28.4	25863	15
19	Ti ₃ C ₂ /CNF	90	cellulose	0.0047	2	24	12	2647	16
20	Ti ₃ C ₂ T _x / TOCNF	50	cellulose	0.0047	1.46	32.7	22.4	4761	17
21	CNF@MXene	50	cellulose	0.0035	/	40	/	7029	18
22	d-Ti ₃ C ₂ T _x /ANF	60	Aramid Nanofibe	0.0017	1.255	28.54	22.74	13377	19
23	MXene-GO	50	GO	0.0007	/	50.17	/	/	20
24	Ti ₃ C ₂ T _x / PEDOT: PSS	87.5	PEDOT: PSS	0.0011	1.94	42.1	21.7	19497.8	21
25	MXene film	Bulk	/	0.0009	2.165	42.78	19.76	21953	
26	MXene/AgNW film	86	Nanocell ulose	0.0017	1.5	42.74	28.49	16724	work

Table S1 Comparison of EMI shielding performance for various materials

- 1. X. P. Shui and D. D. L. Chung, *Journal Of Electronic Materials*, 1997, **26**, 928-934.
- 2. K. Ji, H. Zhao, J. Zhang, J. Chen and Z. Dai, *Applied Surface Science*, 2014, **311**, 351-356.
- 3. Y. L. Yang and M. C. Gupta, *Nano Letters*, 2005, **5**, 2131-2134.
- 4. Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou and Z. Zhang, *Advanced Functional Materials*, 2016, **26**, 303-310.
- 5. M. Crespo, M. Gonzalez, A. L. Elias, L. P. Rajukumar, J. Baselga, M. Terrones and J. Pozuelo, *Physica Status Solidi-Rapid Research Letters*, 2014, **8**, 698-704.
- Y. Chen, H.-B. Zhang, Y. Yang, M. Wang, A. Cao and Z.-Z. Yu, *Advanced Functional Materials*, 2016, 26, 447-455.
- 7. L.-Q. Zhang, B. Yang, J. Teng, J. Lei, D.-X. Yan, G.-J. Zhong and Z.-M. Li, *Journal of Materials Chemistry C*, 2017, **5**, 3130-3138.
- 8. B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei and W. Zheng, *Carbon*, 2016, **102**, 154-160.
- L. Zhang, N. T. Alvarez, M. X. Zhang, M. Haase, R. Malik, D. Mast and V. Shanov, *Carbon*, 2015, 82, 353-359.
- W. L. Song, X. T. Guan, L. Z. Fan, W. Q. Cao, C. Y. Wang, Q. L. Zhao and M. S. Cao, *Journal Of Materials Chemistry A*, 2015, 3, 2097-2107.
- 11. Z. Chen, C. Xu, C. Ma, W. Ren and H.-M. Cheng, *Advanced Materials*, 2013, **25**, 1296-1300.
- 12. Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue and J.-K. Kim, Acs Applied Materials & Interfaces, 2017, 9, 9059-9069.
- 13. Q. Song, F. Ye, X. Yin, W. Li, H. Li, Y. Liu, K. Li, K. Xie, X. Li, Q. Fu, L. Cheng, L. Zhang and B. Wei, Advanced Materials, 2017, **29**.
- 14. J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou and Z.-Z. Yu, *Advanced Materials*, 2017, **29**, 1702367.
- 15. F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo and Y. Gogotsi, *Science*, 2016, **353**, 1137-1140.
- W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang, Y. Y. Jiang, M. G. Ma and F. Chen, ACS Nano, 2018, 12, 4583-4593.
- 17. Z. Zhan, Q. Song, Z. Zhou and C. Lu, *Journal of Materials Chemistry C*, 2019, **7**, 9820-9829.
- 18. B. Zhou, Z. Zhang, Y. Li, G. Han, Y. Feng, B. Wang, D. Zhang, J. Ma and C. Liu, ACS Appl Mater Interfaces, 2020, DOI: 10.1021/acsami.9b19768.
- 19. F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si, J. Huang, M. Zhang and Q. Ma, *Nanoscale*, 2019, **11**, 23382-23391.
- J. Liu, Z. Liu, H. B. Zhang, W. Chen, Z. Zhao, Q. W. Wang and Z. Z. Yu, Advanced Electronic Materials, 2019, DOI: 10.1002/aelm.201901094.
- 21. R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao and X. Feng, *ACS Appl Mater Interfaces*, 2018, **10**, 44787-44795.