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Fig. S1 (a) The SEM image used for particle size distribution, (b) the particle size distribution of Ni/MnO 

nanocomposites with Ni/Mn=20:80. The red number in (a) is serial number for nickel particle. There are 47 nickel 

particles considered for ensuring their size distribution. 
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Fig. S2 (a) The SEM image used for particle size distribution, (b) the particle size distribution of Ni/MnO 

nanocomposites with Ni/Mn=40:60. The red number in (a) is serial number for nickel particle. There are 56 nickel 

particles considered for ensuring their size distribution. 
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Fig. S3 (a) The SEM image used for particle size distribution, (b) the particle size distribution of Ni/MnO 

nanocomposites with Ni/Mn=60:40. The red number in (a) is serial number for nickel particle. There are 124 nickel 

particles considered for ensuring their size distribution. 
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The statistical data of nickel particle size are obtained by a Nano Measurer software in Ni/MnO 

nanocomposites of Ni/Mn=60:40. The total area of nickel particles in Fig. S3a is calculated by the following 

formula:
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where S is the sum of the area of all nickel particles in Fig. S3a, and di is the equivalent diameter of nickel particles. 

The value of S is 104574.64 nm2, while the area of the SEM image is 1791521.49 nm2. The nickel particles cover 

5.84 % of the total area of the SEM images. 

Table S1 Fitting parameters using the power law

Fitting parameters

Samples Aa nb Reliability Factor

MnO 5.912×10-14 1.4197 0.74635

Ni20 7.204×10-14 1.3122 0.95111

Ni40 5.603×10-12 1.1229 0.87236

a Apparent ahead parameter in power law. b exponential parameter in power law. The power law is in the form of 
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Fig. S4  Models of (100) crystal face to calculate tunneling conductivity using first-principles method.
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Fig. S5  Models of (110) crystal face to calculate tunneling conductivity using first-principles method. 

Fig. S6. The frequency dependence of reactance for Ni/MnO nanocomposites with different nickel content. The 

insets of (a) and (b) show equivalent circuits. 

Equivalent circuit analysis was performed to further investigate the impedance spectra of 

nanocomposites. As shown in Fig. S6a, the reactance is negative, indicating capacitive behavior. The inset in Fig. 

S6a is their equivalent circuit by a series resistor Rs and a parallel connection of a resistor Rp and a capacitor Cp. The 
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Rs comes from the silver electrode, while the Rp results from the leakage current due to the mutual contact or 

agglometation of nickel particles.S1 The reactance of Ni60 is positive at lower frequency range but turns to negative 

at higher frequency range (in the Fig. S6b). Interestingly, the positive-negative switching phenomenon for Z′′ 

corresponded well to negative-positive switching for εr′, indicating that negative permittivity behavior has inductive 

character while positive permittivity behavior has capacitive character.S2 There are resistance R, inductance L and 

capacitance C in the equivalent circuits of Ni60 ( in the inset of Fig. S6b). L is determined by tunneling current 

loops in the composites, while C is determined by the isolated nickel nanopartcles. As well known, the current of L 

would be decreased while the behavior of C is enhanced under the high-frequency external electric field, leading to 

the inductive–capacitive transitions with increasing frequency. Similar phenomena were also observed in Ag/YIG 

composites and LaxSr1-xMnO3 ceramics.S3,S4 

As shown in Fig. S7, we built a square slab model (200 mm × 200 mm) with different thicknesses d (d = 

0.1, 0.25, 0.5 and 1 mm), and perfect electric conductor (PEC) and perfect magnetic conductor (PMC) were used to 

simulate transverse electromagnetic wave (TEM) waveguide. The electromagnetic parameters of the Ni60 

metacomposite in (Fig. 7-9) were used to conduct the electromagnetic stimulation. The scattering parameters (S11 

and S12) were obtained, and shielding effectiveness (SE) was evaluated using Equation S1-S5. SE is the main 

evaluation criterion of suppressing electromagnetic interference (EMI). The SE total (SET) includes SE absorption 

(SEA), and SE reflection (SER). 
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Fig.S7 The square slab model built for numerical simulation.

Fig. S8 Frequency dispersion of EMI SER (a) and SEA (b) for Ni60 metacomposites with different 

thickness. 
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