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Fig. S1 (a) Band structure and (b) density of states (DOS) of bulk Fe4N. (c) Band structure and (d) 

DOS of bulk La2/3Sr1/3MnO3. The red and blue lines distinguish spin-up and spin-down, 

respectively.
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Fig. S2 Band structures of bulk Fe4N (a) and La2/3Sr1/3MnO3 (b) calculated by Nanodcal package. 

The red and blue lines distinguish spin-up and spin-down band structure, respectively.
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The spin-dependent current was further obtained using the Landauer-Büttiker formula1
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where e is the electron charge, h is Planck’s constant, and  is the spin-dependent (σ = ↑,↓)  ,T E V

transmission coefficient at a bias voltage .  is Fermi-Dirac distribution R LV V V    L(R)f E 

function related to the chemical potential  of the left(right) electrode. L(R)

The spin injection efficiency (SIE) and tunneling magnetoresistance (TMR) at a voltage are 

defined as
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where IPC and IAPC are the total currents in PC and APC, respectively. At the equilibrium state, SIE 

and TMR are calculated from the electron transmittance coefficient (T(EF)) at Fermi level.

For linearly polarized light, the polarization vector can be defined as e=cosθ e1 + sinθ e2, 

where θ is the angle between the polarization direction and the vector e1. The photocurrent moving 

into the left electrode is defined as follows2, 3
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The polarization vector of elliptically polarized light is e=cosϕ e1 + i sinϕ e2, where ϕ determines its 

helicity. ϕ=±45° corresponds to right- and left-handed circularly polarized light, then the 

photocurrent is described as
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In the above equations, , where m0 is the bare electron mass, Iω is 2
0 0( / ) ( / 2 )r rC e m N c I   h
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the photon flux defined as the number of photons per unit time per unit area, ω is the frequency and 

c is the speed of light, μr is the relative magnetic susceptibility, εr is the relative dielectric constant, 

ε is the dielectric constant, and N is the number of photons.  are the retarded and advanced /
0
r aG

Green’s functions without photons, respectively. Meanwhile,  are greater and lesser Green’s /
0G 

function without photons, respectively.  is the Cartesian component of the electron momentum, , ,x y zp

and e1/2x,y,z is the Cartesian component of the unit vector e1/2, which characterizes the polarization of 

the light. The normalized photocurrent is written as
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Note that the unit of R is a0
2/photon where a0 is the Bohr radius.
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