Electronic Supplementary Information

Tunneling Magnetoresistance and Light Modulation in

Fe₄N(La_{2/3}Sr_{1/3}MnO₃)/C₆₀/Fe₄N Single Molecule Magnetic Tunnel Junctions

Xuefei Han^{1,2}, Wenbo Mi^{2,*}, Dunhui Wang^{1,*}

¹College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310012, China

²Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China

^{*}Author to whom all correspondence should be addressed.

E-mail: miwenbo@tju.edu.cn and wangdh@hdu.edu.cn

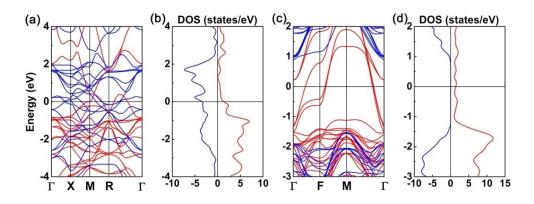


Fig. S1 (a) Band structure and (b) density of states (DOS) of bulk Fe₄N. (c) Band structure and (d) DOS of bulk La_{2/3}Sr_{1/3}MnO₃. The red and blue lines distinguish spin-up and spin-down, respectively.

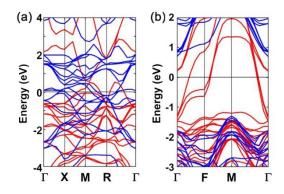


Fig. S2 Band structures of bulk Fe_4N (a) and $La_{2/3}Sr_{1/3}MnO_3$ (b) calculated by Nanodcal package. The red and blue lines distinguish spin-up and spin-down band structure, respectively.

The spin-dependent current was further obtained using the Landauer-Büttiker formula¹

$$I_{\sigma} = \frac{e}{h} \int_{\mu_{\rm L}}^{\mu_{\rm R}} T_{\sigma} \left(E, V \right) \left[f \left(E - \mu_{\rm R} \right) - f \left(E - \mu_{\rm L} \right) \right] \mathrm{d}E , \qquad (1)$$

where *e* is the electron charge, *h* is Planck's constant, and $T_{\sigma}(E,V)$ is the spin-dependent ($\sigma = \uparrow,\downarrow$) transmission coefficient at a bias voltage $V = V_{\rm R} - V_{\rm L}$. $f(E - \mu_{\rm L(R)})$ is Fermi-Dirac distribution function related to the chemical potential $\mu_{\rm L(R)}$ of the left(right) electrode.

The spin injection efficiency (SIE) and tunneling magnetoresistance (TMR) at a voltage are defined as

$$\operatorname{SIE} = \frac{I_{\uparrow}(V) - I_{\downarrow}(V)}{I_{\uparrow}(V) + I_{\downarrow}(V)} \times 100\%, \qquad (2)$$

$$TMR = \frac{I_{PC}(V) - I_{APC}(V)}{I_{APC}(V)} \times 100\%,$$
(3)

where I_{PC} and I_{APC} are the total currents in PC and APC, respectively. At the equilibrium state, SIE and TMR are calculated from the electron transmittance coefficient ($T(E_F)$) at Fermi level.

For linearly polarized light, the polarization vector can be defined as $\mathbf{e}=\cos\theta \ \mathbf{e}_1 + \sin\theta \ \mathbf{e}_2$, where θ is the angle between the polarization direction and the vector \mathbf{e}_1 . The photocurrent moving into the left electrode is defined as follows^{2, 3}

$$J_{L}^{(\text{ph})} = \frac{ie}{h} \int (\cos^{2}\theta \operatorname{Tr} \{ \Gamma_{L} [G_{1}^{<(\text{ph})} + f_{L} (G_{1}^{>(\text{ph})} - G_{1}^{<(\text{ph})})] \}$$

+ $\sin^{2}\theta \operatorname{Tr} \{ \Gamma_{L} [G_{2}^{<(\text{ph})} + f_{L} (G_{2}^{>(\text{ph})} - G_{2}^{<(\text{ph})})] \}$
+ $\frac{\sin(2\theta)}{2} \operatorname{Tr} \{ \Gamma_{L} [G_{3}^{<(\text{ph})} + f_{L} (G_{3}^{>(\text{ph})} - G_{3}^{<(\text{ph})})] \}) dE , \qquad (4)$

where

$$G_{1}^{>/<(\mathrm{ph})} = \sum_{\alpha,\beta=x,y,z} C_{0}NG_{0}^{r}e_{1\alpha}p_{\alpha}^{*}G_{0}^{>/<}e_{1\beta}p_{\beta}G_{0}^{a},$$

$$G_{2}^{>/<(\mathrm{ph})} = \sum_{\alpha,\beta=x,y,z} C_{0}NG_{0}^{r}e_{2\alpha}p_{\alpha}^{*}G_{0}^{>/<}e_{2\beta}p_{\beta}G_{0}^{a},$$

$$G_{3}^{>/<(\mathrm{ph})} = \sum_{\alpha,\beta=x,y,z} C_{0}N(G_{0}^{r}e_{1\alpha}p_{\alpha}^{*}G_{0}^{>/<}e_{2\beta}p_{\beta}G_{0}^{a} + G_{0}^{r}e_{2\alpha}p_{\alpha}^{*}G_{0}^{>/<}e_{1\beta}p_{\beta}G_{0}^{a}).$$
(5)

The polarization vector of elliptically polarized light is $\mathbf{e}=\cos\phi \mathbf{e}_1 + i\sin\phi \mathbf{e}_2$, where ϕ determines its helicity. $\phi=\pm 45^\circ$ corresponds to right- and left-handed circularly polarized light, then the photocurrent is described as

$$J_{L}^{(\text{ph})} = \frac{ie}{2h} \int (\text{Tr}\{\Gamma_{L}[G_{1}^{<(\text{ph})} + f_{L}(G_{1}^{>(\text{ph})} - G_{1}^{<(\text{ph})})]\} + \text{Tr}\{\Gamma_{L}[G_{2}^{<(\text{ph})} + f_{L}(G_{2}^{>(\text{ph})} - G_{2}^{<(\text{ph})})]\} \\ \pm \text{Tr}\{\Gamma_{L}[G_{3}^{<(\text{ph})} + f_{L}(G_{3}^{>(\text{ph})} - G_{3}^{<(\text{ph})})]\})dE, \qquad (6)$$

where $G_{1,2}^{>/<(ph)}$ is the same as the linearly polarized case and

$$G_{3}^{>/<(\mathrm{ph})} = \pm i \sum_{\alpha,\beta=x,y,z} C_{0} N(G_{0}^{r} e_{1\alpha} p_{\alpha}^{*} G_{0}^{>/<} e_{2\beta} p_{\beta} G_{0}^{a} - G_{0}^{r} e_{2\alpha} p_{\alpha}^{*} G_{0}^{>/<} e_{1\beta} p_{\beta} G_{0}^{a}).$$
(7)

In the above equations, $C_0 = (e/m_0)^2 (h \sqrt{\mu_r \varepsilon_r} / 2N\omega \varepsilon c) I_{\omega}$, where m_0 is the bare electron mass, I_{ω} is

the photon flux defined as the number of photons per unit time per unit area, ω is the frequency and c is the speed of light, μ_r is the relative magnetic susceptibility, ε_r is the relative dielectric constant, ε is the dielectric constant, and N is the number of photons. $G_0^{r/a}$ are the retarded and advanced Green's functions without photons, respectively. Meanwhile, $G_0^{>/<}$ are greater and lesser Green's function without photons, respectively. Meanwhile, $G_0^{>/<}$ are greater and lesser Green's function without photons, respectively. $p_{x,y,z}$ is the Cartesian component of the electron momentum, and $e_{1/2x,y,z}$ is the Cartesian component of the unit vector $\mathbf{e}_{1/2}$, which characterizes the polarization of the light. The normalized photocurrent is written as

$$R = \frac{J_L^{(\text{ph})}}{eI_m} \,. \tag{8}$$

Note that the unit of *R* is a_0^2 /photon where a_0 is the Bohr radius.

References

- 1. Y. Meir and N. S. Wingreen, Phys. Rev. Lett., 1992, 68, 2512–2515.
- 2. Y. Xie, L. Zhang, Y. Zhu, L. Liu and H. Guo, *Nanotechnology*, 2015, 26, 455202.
- Y. Xie, M. Chen, Z. Wu, Y. Hu, Y. Wang, J. Wang and H. Guo, *Phys. Rev. Appl.*, 2018, 10, 034005.