Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supplementary Material:

Negative and near-zero Poisson's ratio of interlayer space in 2D Graphene/MoS₂ and Graphene/*h*-BN heterostructures

Xiaowen Liab, Chuanwei Huang^c, Songbai Hu^b, Bei Deng^b, Zuhuang Chen^d, Wenqiao Han^b and

Lang Chen*b

^aDepartment of Physics, Harbin Institute of Technology, Harbin 150080, China.

^bDepartment of Physics, Southern University of Science and Technology, Shenzhen, Guangdong

518055, China.

^cShenzhen Key Laboratory of Special Functional Materials College of Materials Science and

Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.

^dSchool of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen,

Guangdong 518055, China.Correspondence and requests for materials should be addressed to L.C.

(email: <u>chenlang@sustc.edu.cn</u>).

Supplementary Information Outline:

- 1. Interlayer binding energies and equilibrium distance results Supplementary Table S1
- 2. Out-of-plane Poisson's ratio results Supplementary Figure S1, Table S2
- 3. Out-of-plane Stiffness results Supplementary Figure S2, Table S3
- 4. In-plane Poisson's ratio results Supplementary Figure S3, Table S4
- 5. In-plane Stiffness results Supplementary Figure S4, Table S5
- 6. The relationship between Poisson's ratio and stiffness
- 7. The relationship between θ and v_{13}

1. Interlayer binding energies and equilibrium distance results

Table 1. Interlayer binding energies (E_{bind}) and equilibrium distances (d) for bilayer graphene, bilayer *h*-BN, bilayer MoS₂, G/MoS₂ and G/*h*-BN heterostructures.

	Stacking mode C		Stacking mode D		Stacking mode E	
G/h-BN heterostructure	Top view d		Top view d		• Carbon • Boron • Nitrogen	
	E_{bind} (meV/Å ²)	d (Å)	E_{bind} (meV/Å ²)	d (Å)	E_{bind} (meV/Å ²)	<i>d</i> (Å)
D2	17.43	3.366	18.41	3.349	23.26	3.129
OptB88	21.32	3.443	21.93	3.404	25.11	3.327
MBD	16.18	3.577	16.75	3.445	19.61	3.345

2. Out-of-plane Poisson's ratio results

Figure S1. The strain generated in the z direction $({}^{\varepsilon_z})$ versus the strain applied in the x direction (${}^{\varepsilon_x}$) data of uniaxial deformation of the (**a**, **b**, **c**) bilayer graphene, (**d**, **e**, **f**) bilayer *h*-BN, (**g**, **h**, **i**) bilayer MoS₂, (**j**, **k**, **l**) G/MoS₂ and (**m**, **n**, **o**) G/*h*-BN heterostructures, calculated by density functional theory with different van der Waals corrections.

Table S2. Computational results of out-of-plane Poisson's ratio (v_{13}) for the bilayer graphene,

bilayer *h*-BN, bilayer MoS₂, G/MoS₂ and G/*h*-BN heterostructures by density functional theory

		Out-of-plane Poisson's ratio (v_{13})				
Bilayer		D2	optB88	MBD		
Graphene		-0.097	-0.061	-0.089		
<i>h</i> -BN		-0.010	-0.00023	-0.0025		
	d_{Top}	0.247	0.256	0.250		
MoS ₂	d_{Mo}	0.240	0.258	0.247		
	d	0.228	0.264	0.243		
heterostructure						
G/h-BN		-0.033	0.0005	-0.002		
G/MoS ₂	d_{Top}	0.080	0.099	0.089		
	d_S	0.295	0.297	0.296		
	d	-0.120	-0.090	-0.107		

with different van der Waals corrections.

d represents interfacial layer equilibrium distance. d_S represents the distance between S and S atoms. d_{Mo} represents the distance between Mo atoms in upper MoS₂ monolayer and Mo atoms in lower MoS₂ monolayer and d_{Top} represents the distance between top S atoms in upper MoS₂ monolayer and S (C) atoms in lower MoS₂ (Graphene) monolayer (Fig. 1).

3. Out-of-plane Stiffness results

Figure S2. Total energy of the (**a**, **b**, **c**) bilayer graphene, (**d**, **e**, **f**) bilayer *h*-BN, (**g**, **h**, **i**) bilayer MoS₂, (**j**, **k**, **l**) G/MoS₂ and (**m**, **n**, **o**) G/*h*-BN heterostructures with the strain applied in the z direction (\mathcal{E}_z) calculated by density functional theory with different van der Waals corrections.

Table S3. Computational results of out-of-plane stiffness for the bilayer graphene, bilayer h-BN, bilayer MoS₂, G/MoS₂ and G/h-BN heterostructures by density functional theory with different van der Waals corrections.

	Out-of-plane Stiffness (Gpa)						
	D2		optB88		MBD		
Бпауег	C ₃₃	C ₃₃₃	C ₃₃	C ₃₃₃	C ₃₃	C ₃₃₃	
Graphene	106	-939	71	-586	54	-463	
<i>h</i> -BN	109 -463		67	-463	56	-463	
MoS ₂	28	-202	34	-202	30	-210	
heterostructure							
G/h-BN	121	-1040	70	-571	61	-508	
G/MoS ₂	56	-500	57	-475	56	-489	

4. In-plane Poisson's ratio results

Figure S3. The strain generated in the y direction $({}^{\mathcal{E}}y)$ versus the strain applied in the x direction (${}^{\mathcal{E}}x$) data of uniaxial deformation of the (**a**, **b**, **c**) bilayer graphene, (**d**, **e**, **f**) bilayer *h*-BN, (**g**, **h**, **i**) bilayer MoS₂, (**j**, **k**, **l**) G/MoS₂ and (**m**, **n**, **o**) G/*h*-BN heterostructures, calculated by density functional theory with different van der Waals corrections.

Table S4. Computational results of in-plane Poisson's ratio (v_{12}) for the bilayer graphene, bilayer *h*-BN, bilayer MoS₂, G/MoS₂ and G/*h*-BN heterostructures by density functional theory with

	In-plane Poisson's ratio (v_{12})					
Bilayer	D2	optB88	MBD			
Graphene	0.163	0.159	0.168			
<i>h</i> -BN	0.169	0.199	0.197			
MoS ₂ 0.249		0.250	0.250			
heterostructure						
G/h-BN	0.204	0.176	0.186			
G/MoS ₂	0.171	0.177	0.174			

different van der Waals corrections.

5. In-plane Stiffness results

Figure S4. Total energy of the (**a**, **b**, **c**) bilayer graphene, (**d**, **e**, **f**) bilayer *h*-BN, (**g**, **h**, **i**) bilayer MoS₂, (**j**, **k**, **l**) G/MoS₂ and (**m**, **n**, **o**) G/*h*-BN heterostructures with the strain applied in the x direction (${}^{\varepsilon}x$) calculated by density functional theory with different van der Waals corrections.

Table S5. Computational results of in-plane stiffness for the bilayer graphene, bilayer h-BN,

bilayer MoS₂, G/MoS₂ and G/h-BN heterostructures by density functional theory with different

	In-plane Stiffness (Nm ⁻¹)						
Dilawa	D2		optB88		MBD		
Bilayer	Y ₁₁	Y ₁₁₁	Y ₁₁	Y ₁₁₁	Y ₁₁	Y ₁₁₁	
Graphene	673	-3034	679	-4124	683	-3471	
<i>h</i> -BN	551	-2671	554	-2900	538	-1101	
MoS ₂	244	-1548	247	-2157	256	-1808	
heterostructure							
G/h-BN	596	-1385	625	-4352	615	-2974	
G/MoS ₂	465	-2969	468	-3053	465	-3004	

van der Waals corrections.

By analyzing total energy (see Figure 1), the stiffness (Young's Modulus) SOEC and TOEC of the G/MoS₂ and G/*h*-BN heterostructures in the in-plane direction (Y_{11} and Y_{111}) were derived (see Methods section). The calculated Y_{11} of the G/MoS₂ and G/*h*-BN heterostructures are almost equal to the sum of the stiffness (Young's Modulus) of the two layers of the materials. The Y_{11} of the twodimensional Graphene, MoS₂, and *h*-BN are 340 Nm⁻¹, 109 Nm⁻¹ and 238 Nm⁻¹, respectively¹⁻³. This result reveals the reason for the enhanced stability of the carbon-based heterostructures observed in the experiment⁴.

6. The relationship between Poisson's ratio and stiffness

The stiffness tensor of a hexagonal crystal system can be written as follows:

$$C_{\alpha\beta} = \begin{pmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{C_{11} - C_{12}}{2} \\ \end{array} \right)_{-}$$

The compliance tensor can be obtained by taking inverse of the stiffness tensor:

$$S_{\alpha\beta} = C_{\alpha\beta}^{-1} = \begin{pmatrix} S_{11} & S_{12} & S_{13} & 0 & 0 & 0 \\ S_{12} & S_{11} & S_{13} & 0 & 0 & 0 \\ S_{13} & S_{13} & S_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & S_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(S_{11} - S_{12}) \end{pmatrix}_{.}$$

The in-plane Poisson's ratio \mathbf{v}_{12} and the out-of-plane Poisson's ratio \mathbf{v}_{13} :

$$\begin{cases} v_{12} = -\frac{S_{12}}{S_{11}} \\ v_{13} = -\frac{S_{13}}{S_{11}} \end{cases}$$

After simplification,

$$\begin{cases} v_{12} = \frac{C_{13}^{2} - C_{12}C_{33}}{C_{13}^{2} - C_{11}C_{33}} \\ v_{13} = \frac{C_{13}(C_{12} - C_{11})}{C_{13}^{2} - C_{11}C_{33}} \end{cases}$$

Therefore, we can verify the accuracy of the results by the relationship between Poisson's ratio and stiffness tensor.

7. the relationship between θ and v_{13}

When i fixed in the x direction and j varying in the y-z plane by an angle of θ , the transformation

from the stress σ_{β} (unprimed) to the stress $\sigma_{\beta'}$ in arbitrary system (primed) is described by:

$ \begin{matrix} \sigma_{1'} \\ \sigma_{2'} \\ \sigma_{3'} \\ \sigma_{4'} \\ \sigma_{5'} \\ \sigma_{6'} \end{matrix} $	$ \begin{smallmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$0 \\ \cos^2 \theta \\ \sin^2 \theta \\ -\sin \theta \cos \theta \\ 0 \\ 0 \\ 0$	$0 \\ \sin^2 \theta \\ \cos^2 \theta \\ \sin \theta \cos \theta \\ 0 \\ 0$	0 $2\sin\theta\cos\theta$ $-2\sin\theta\cos\theta$ $\cos^{2}\theta - \sin^{2}\theta$ 0 0	$\begin{array}{c} 0\\ 0\\ 0\\ cos\theta\\ sin\theta \end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ -\sin\theta\\ \cos\theta \end{array}$	$ \begin{matrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \\ \sigma_5 \\ \sigma_6 \end{matrix} $
$\breve{\sigma}_{\beta'}$	=		7	σ _{β'} β			$\overleftarrow{\sigma}_{\beta}$

Note that we use contracted notations $(11 \rightarrow 1, 22 \rightarrow 2, 33 \rightarrow 3, 13 \rightarrow 4, 23 \rightarrow 5, 12 \rightarrow 3, C_{ijkl} \rightarrow C_{\alpha\beta}$

 $C_{ijklmn} \rightarrow C_{\alpha\beta\gamma}$) for the tensor indices. The transformation from the strain ε_{α} (unprimed) to the strain $\varepsilon_{\alpha'}$ in arbitrary system (primed) is described by:

The compliance coefficients $S_{\alpha'\beta'}$ are defined as the proportionality constants between stress $\sigma_{\beta'}$ and strain by the Hooke's law:

$$\varepsilon_{\alpha'} = S_{\alpha'\beta'}\sigma_{\beta'}$$

It can be expressed by the coordinate transformation equation:

$$T_{\varepsilon_{\alpha'\alpha}}\varepsilon_{\alpha} = S_{\alpha'\beta'}T_{\sigma_{\beta'\beta}}\sigma_{\beta}$$

We obtain

$$\varepsilon_{\alpha} = \frac{T_{\varepsilon_{\alpha'\alpha}}^{-1} S_{\alpha'\beta'} T_{\sigma_{\beta'\beta}}}{S_{\alpha\beta}} \sigma_{\beta},$$

and

 $S_{\alpha'\beta'} = T_{\varepsilon_{\alpha'\alpha}} S_{\alpha\beta} T_{\sigma_{\beta'\beta}}^{-1}$

The out-of-plane Poisson's ratio v_{13} :

$$v_{13} = -\frac{S_{13}}{S_{11}}$$

After simplification,

$$v_{13}(\theta) = -\frac{(C_{11} - C_{12})C_{13}\cos^2\theta - (C_{13}^2 - C_{12}C_{13})\sin^2\theta}{C_{13}^2 - C_{11}C_{13}}.$$

Reference

- 1. N. G. Chopra and A. Zettl, Solid State Communications, 1998, 105, 297-300.
- 2. S. Woo, H. C. Park and Y.-W. Son, Phys. Rev. B, 2016, 93, 075420.
- M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. Krishna Ande, S. van der Zwaag, J. J. Plata, C. Toher, S. Curtarolo, G. Ceder, K. A. Persson and M. Asta, *Sci. Data.*, 2015, 2, 150009.
- 4. C.-M. Park and H.-J. Sohn, Adv. Mater., 2007, 19, 2465-2468.