Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Bi and Zn co-doped SnTe thermoelectrics: Interplay of resonance levels and heavy hole band dominance leading to enhanced performance and record high room temperature ZT

U Sandhya Shenoy^{†,*} and D Krishna Bhat^{‡,*}

[†]Department of Chemistry, College of Engineering and Technology, Srinivas University, Mukka,

Mangalore - 574146, India

[‡]Department of Chemistry, National Institute of Technology Karnataka, Surathkal,

Mangalore - 575025, India

Corresponding authors* email: denthajekb@gmail.com; sandhyashenoy347@gmail.com

Figure S1. Electronic structure and pDOS of $Sn_{14}BiZnTe_{16}$ parallelly aligned to provide better clarity in understanding the contributions of various atomic orbitals to the electronic structure. The values within the bracket indicate the J values. The energies are shifted with respect to the Fermi level which is set at zero.

Figure S2. a) Density of states; b) electrical conductivity; c) Seebeck co-efficient and d) thermal conductivity of $Sn_{14}BiZnTe_{16}$ as a function of chemical potential (μ) at various temperatures. The Fermi level is set at zero. The negative ' μ ' corresponds to p-type hole doping while the positive ' μ ' corresponds to n-type electron doping. The Seebeck peaks found around the Fermi level shows a decreasing trend with increasing temperature representing a classic case of resonant dopant contribution.

Figure S3. TEM image of $Sn_{0.92}Bi_{0.04}Zn_{0.04}Te$ revealing *Zn* nanoprecipitates. The scale bar represents 50 nm. The percentage elemental compositions of the area marked in red circles are given in Table S2.

Element	Percentage composition (%)			
	Spot 1	Spot 2	Spot 3	
Sn	45.21	45.58	46.10	
Те	49.86	50.01	49.96	
Bi	1.82	1.91	1.98	
Zn	3.11	2.5	1.96	

Table S1. Elemental percentage composition of $Sn_{0.92}Bi_{0.04}Zn_{0.04}Te$ using EDS analysis at various area marked in TEM image (Figure S3).

Sample	n (10 ²⁰ cm ⁻³)	μ (cm ² V ⁻¹ S ⁻¹)
SnTe	3.5	144.5
Sn _{0.96} Bi _{0.04} Te	1.67	138.3
Sn _{0.96} Zn _{0.04} Te	1.98	148.2
Sn _{0.92} Bi _{0.04} Zn _{0.04} Te	0.947	141.7

Table S2. Carrier concentration (n) and mobility (μ) of SnTe and doped samples.

Figure S4. a) Power factor as a function of temperature for pristine SnTe and doped samples; b) Comparison of power factor of $Sn_{0.92}Bi_{0.04}Zn_{0.04}Te$ with state of the art SnTe based materials with high power factor.¹⁻⁶

References

Guo, F.; Cui, B.; Geng, H.; Zhang, Y.; Wu, H.; Zhang, Q.; Yu, B.; Pennycook, S.J.; Cai, W.;
Sui, J. Simultaneous Boost of Power Factor and Figure of Merit in In-Cu Co-doped SnTe, *Small* 2019, 1902493.

2. Banik, A.; Shenoy, U. S.; Saha, S.; Waghmare, U. V.; Biswas, K. High Power Factor and Enhanced Thermoelectric Performance of SnTe-AgInTe₂: Synergistic Effect of Resonance Level and Valence Band Convergence. *J. Am. Chem. Soc.*, **2016**, *138*, 13068-13075.

3. Moshwan, R.; Liu, W.D.; Shi, X.L.; Wang, Y.P.; Zou, J.; Chen, Z.G. Realizing High Thermoelectric Properties of SnTe via Synergistic Band Engineering and Structure Engineering. *Nano Energy*, **2019**, *65*, 104056.

4. Shenoy, S.U.; Bhat, D.K. Electronic Structure Engineering of Tin Telluride through Codoping of Bismuth and Indium for High Performance Thermoelectrics: A Synergistic Effect Leading to Record High Room Temperature ZT in Tin Telluride. *J. Mater. Chem. C* **2019**, *7*, 4817-4821.

5. Bhat, D.K.; Shenoy, S.U. High Thermoelectric Performance of Co-doped Tin Telluride Due To Synergistic Effect of Magnesium and Indium. *J. Phys. Chem. C* **2017**, *121*, 7123-7130.

6. Bhat, D.K.; Shenoy, S.U. Enhanced Thermoelectric Performance of Bulk Tin Telluride: Synergistic Effect of Calcium and Indium Co-doping. *Mat. Today Phys.* **2018**, *4*, 12-18.