Supplementary Information

Boron-containing D-A-A type TADF materials with tiny singlet-triplet energy splittings and high photoluminescence quantum yields for highly efficient OLEDs with low efficiency roll-offs

Cheng Qu, Guoqi Xia, Yincai Xu, Yunlong Zhu, Jixiong Liang, Hao Zhang, Jiaxuan Wang, Zuolun Zhang* and Yue Wang

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China

E-mail: zuolunzhang@jlu.edu.cn

Contents:

1. Supplementary figures	S2-S5
2. Supplementary tables	- S6
3. NMR spectra	- S7-S11
4. Cartesian coordinates of DFT-optimized geometries	- S12-S19
5. References	- S19

1. Supplementary figures

Fig. S1 Molecular structures and frontier molecular orbital distributions of the borylacceptor-free PX-TRZ and PX-SF calculated by DFT (B3LYP/6-31G(d,p)). The angles show the case in the optimized geometries.

Fig. S2 Natural transition orbital analyses for the S₁-state excitations of PX-TRZ-B, PX-TRZ, PX-SF-B and PX-SF.

Fig. S3 TGA (left) and DSC (right) curves of PX-TRZ-B and PX-SF-B measured at a heating rate of 10 °C/min under nitrogen atmosphere.

Fig. S4 Absorption and photoluminescence spectra of PX-TRZ-B (left) and PX-SF-B (right) measured at room temperature with various solvents.

Fig. S5 Fluorescence and phosphorescence spectra of PX-TRZ-B (left) and PX-SF-B (right) measured at 77 K in toluene. Insets show the case at the onsets of the spectra.

Fig. S6 Fluorescence spectra of the doped films of PX-TRZ-B and PX-SF-B in CBP host (5 wt% doping concentration).

Fig. S7 Temperature-dependent transient PL decay curves of PX-TRZ-B and PX-SF-B in CBP (5 wt% doping concentration) at the temperatures ranging from 150 K to 300 K.

2. Supplementary tables

	PX-T	RZ-B	PX	-TRZ	PX-	SF-B	PX	-SF
	НОМО	LUMO	HOMO	LUMO	НОМО	LUMO	НОМО	LUMO
phenoxazine	94.0%	0.6%	93.97%	5.82%	93.9%	1.2%	94.1%	5.4%
Triphenyltriazine /sulfonyldibenzene	5.8%	73.3%	3.81%	96.06%	5.7%	53.9%	5.7%	94.2%
boron		11.8%				19.2%		
mesityl		11.3%				19.4%		
"Contributions over 0.5% are shown, and contributions from the hydrogen atoms are not included.								

Table S1. Contributions of molecular fragments to HOMO and LUMO.^a

Table S2. TD-DFT calculation results and the HOMO-LUMO overlap integrals for PX-TRZ-B, PX-TRZ, PX-SF-B and PX-SF.

	PX-TRZ-B	PX-TRZ	PX-SF-B	PX-SF
$E_{\rm S1}$ / ${ m eV}^a$	2.040	2.155	2.263	2.578
$E_{\rm T1}$ / ${ m eV}^a$	2.010	2.099	2.244	2.522
$\Delta E_{\rm ST} / { m eV}^b$	0.030	0.056	0.019	0.056
$f_{\rm S1 \leftarrow S0}^{c}$	0.024	0.046	0.010	0.024
$C_{S1 \leftarrow S0}^{d}$	HOMO→LUMO	HOMO→LUMO	HOMO→LUMO	HOMO→LUMO
	(98.29%)	(98.18%)	(99.66%)	(99.37%)
O _{HOMO-LUMO} ^e	0.085	0.182	0.098	0.195
^{<i>a</i>} Singlet (E_{S1}) and t	triplet (E_{T1}) energy levels. ^b En	ergy splitting between S_1 and	T ₁ states. Coscillator strength	for S1 \leftarrow S0 transition.

dOrbital contributions for S1←S0 transition (contributions over 5% are given). eOverlap integral of HOMO and LUMO.

Table S3. Rate constants of PX-TRZ-B and PX-SF-B determined by the photoluminescence quantum yields and lifetimes of the doped films of these compounds.

Compounds	${oldsymbol{\varPhi}}_{\mathrm{PF}}{}^a$	${oldsymbol{\varPhi}_{\mathrm{DF}}}^b$	$k_{\rm P(total)}^{c}$	$k_{\mathrm{P(r)}}^{d}$	$k_{\rm IC}^{e}$	$k_{\mathrm{D(r)}}f$	$k_{\rm ISC}^{\rm g}$	$k_{\rm RISC}^{h}$
Compounds ((%)	(%)	(10 ⁶ s ⁻¹)	(10^6s^{-1})				
PX-TRZ-B	18.0	47.0	21.9	3.95	2.13	0.16	15.9	0.57
PX-SF-B	23.0	61.0	18.3	4.21	0.80	0.16	13.3	0.58
"Prompt fluorescence component of $\Phi_{\rm PL}$. "Delayed fluorescence component of $\Phi_{\rm PL}$. "Total decay rate constant of the prompt								
component. ^d Radiative decay rate constant of the prompt component. ^e Internal conversion rate constant of the prompt component.								
/Radiative decay rate constant of the delayed component. gRate constant for intersystem crossing. hRate constant for reverse intersystem								

crossing.

The rate constants were determined by using the following formula:1

 $\begin{aligned} k_{\rm P(r)} &= \varPhi_{\rm PF} / \tau_{\rm PF} \\ k_{\rm D(r)} &= \varPhi_{\rm DF} / \tau_{\rm DF} \\ k_{\rm P(total)} &= k_{\rm P(r)} + k_{\rm IC} + k_{\rm ISC} = k_{\rm P(r)} / \varPhi_{\rm PF} \\ k_{\rm ISC} &= \varPhi_{\rm DF} k_{\rm P(total)} / \varPhi_{\rm PL} \\ k_{\rm RISC} &= k_{\rm D(r)} k_{\rm P(total)} \varPhi_{\rm DF} / (k_{\rm ISC} \varPhi_{\rm PF}) \end{aligned}$

Fig. S8 ¹H NMR spectrum of 2-chloro-4-(4-(dimesitylboraneyl)phenyl)-6-phenyl -1,3,5-triazine in CDCl₃ (400 MHz).

Fig. S9 ¹³C{¹H} NMR spectrum of 2-chloro-4-(4-(dimesitylboraneyl)phenyl)-6phenyl-1,3,5-triazine in CDCl₃ (100 MHz).

Fig. S10 ¹H NMR spectrum of PX-TRZ-B in CDCl₃ (400 MHz).

Fig. S11 ${}^{13}C{}^{1}H$ NMR spectrum of PX-TRZ-B in CDCl₃ (100 MHz).

Fig. S12 ¹H NMR spectrum of (4-((4-bromophenyl)thio)phenyl)dimesitylborane in CDCl₃ (400 MHz).

Fig. S13 ${}^{13}C{}^{1}H$ NMR spectrum of (4-((4-bromophenyl)thio)phenyl)dimesitylborane in CDCl₃ (100 MHz).

7.87	7.85	7.83	7.80	7.66	7.64	7.62	7.60	6.81	

- 2.30 - 1.92

Fig. S14 ¹H NMR spectrum of (4-((4-bromophenyl)sulfonyl)phenyl)dimesitylborane in CDCl₃ (400 MHz).

Fig. S16 ¹H NMR spectrum of PX-SF-B in CDCl₃ (400 MHz).

Fig. S17 ¹³C{¹H} NMR spectrum of PX-SF-B in CDCl₃ (100 MHz).

4. Cartesian coordinates of DFT-optimized geometries

PX-TRZ-B:

Element	Х	Y	Z
С	4.01868	1.17763	-0.18444
С	4.07923	-0.21932	-0.01269
С	2.86073	-0.90867	0.14323
С	1.64217	-0.24248	0.13298
С	1.60368	1.14763	-0.05622
С	2.80579	1.85386	-0.21713
С	-3.22914	1.0554	0.03858
С	-4.46155	1.72291	-0.01165
С	-5.65037	1.00662	0.06248
С	-5.62185	-0.38668	0.17779
С	-4.39652	-1.05867	0.22683
С	-3.20733	-0.34138	0.16326
Ν	-6.8429	-1.11917	0.23654
В	5.44704	-0.97869	-0.01184
С	-7.6012	-1.32121	-0.9318
С	-8.81982	-2.01756	-0.84346
0	-9.29393	-2.51252	0.35483
С	-8.51776	-2.35007	1.48513
С	-7.29511	-1.65522	1.45664
С	-7.18346	-0.87496	-2.18875
С	-7.96973	-1.09817	-3.32227
С	-9.17878	-1.77712	-3.21778
С	-9.59911	-2.24094	-1.96786
С	-9.00457	-2.89331	2.66378
С	-8.28558	-2.74932	3.8539
С	-7.08184	-2.05337	3.8434
С	-6.5903	-1.50748	2.6545
С	5.47961	-2.48385	-0.4559
С	6.74602	-0.21425	0.42497
С	7.89253	-0.20521	-0.41034
С	9.03427	0.49744	-0.02166
С	9.10387	1.17439	1.19834
С	7.9816	1.14602	2.02654
С	6.8096	0.47992	1.65807
С	6.07152	-3.46916	0.37578
С	6.07197	-4.80754	-0.01907
С	5.53406	-5.21534	-1.24277
С	4.97301	-4.24086	-2.0674
С	4.92473	-2.89509	-1.69193
С	5.59074	-6.66061	-1.66914
С	6.69732	-3.1148	1.7075

Ν	0.32746	3.1941	-0.23361
С	0.30803	1.86013	-0.09398
N	-0.81381	1.12958	0.00756
С	-1.9633	1.81764	-0.04827
Ν	-2.04254	3.14916	-0.18447
С	-0.87023	3.79826	-0.27003
С	-0.90075	5.26917	-0.41604
С	-2.12612	5.9494	-0.47193
С	-2.15196	7.33381	-0.60952
С	-0.95732	8.05239	-0.69193
С	0.26558	7.38027	-0.63641
С	0.29606	5.99591	-0.49923
Н	4.9459	1.73155	-0.29839
Н	2.88217	-1.98678	0.27163
Н	0.7089	-0.77783	0.25925
Н	2.76467	2.92655	-0.36307
Н	-4.46688	2.80199	-0.10306
Н	-6.6092	1.51259	0.02827
Н	-4.39097	-2.13991	0.31289
Н	-2.25036	-0.84737	0.19654
Н	-6.23936	-0.35217	-2.27792
Н	-7.62291	-0.73785	-4.28521
Н	-9.79402	-1.95306	-4.09352
Н	-10.53083	-2.78187	-1.84339
Н	-9.95147	-3.42095	2.6291
Н	-8.67207	-3.17613	4.77305
Н	-6.51325	-1.92443	4.75853
Н	-5.65564	-0.96063	2.65517
Н	9.89623	0.51077	-0.68482
Н	8.01807	1.65634	2.9866
Н	6.51066	-5.55231	0.64126
Н	4.56057	-4.53467	-3.03017
Н	5.40524	-7.3329	-0.82575
Н	4.85313	-6.8769	-2.44683
Н	6.57866	-6.91439	-2.07288
Н	6.01418	-2.54577	2.34578
Н	6.98146	-4.01905	2.25202
Н	7.59203	-2.49975	1.5774
Н	4.39285	-2.28649	-3.69056
Н	3.22682	-1.78529	-2.46184
		313	

Н	4.74641	-0.92618	-2.6196
Н	7.06882	-0.6539	-2.3744
Н	8.83106	-0.69453	-2.28957
Н	7.86876	-2.01339	-1.60454
Н	6.01467	0.64951	3.65504
Н	4.96026	1.32931	2.4113
Н	5.0588	-0.40934	2.61251
Н	10.89547	2.30271	0.76059
Н	10.15347	2.69497	2.32163
Н	11.05666	1.19203	2.12098
Н	-3.0436	5.37741	-0.40646
Н	-3.10365	7.85422	-0.65261
Н	-0.97936	9.13269	-0.79905
Н	1.19542	7.9368	-0.70003
Н	1.23576	5.45913	-0.45399

PX-TRZ:

Element	Х	Y	Z
Ν	4.49103	2.13E-5	-8.3E-6
С	3.77986	-1.12057	-0.19632
Ν	2.43801	-1.16846	-0.20302
С	1.81266	-5.9E-6	-4.73E-5
Ν	2.43798	1.16846	0.20295
С	3.77983	1.12059	0.19628
С	4.51954	-2.38146	-0.41932
С	0.33235	-2.5E-5	-4.37E-5
С	4.51948	2.38151	0.41931
С	-0.37542	1.19548	0.19157
С	-1.76548	1.19466	0.19669
С	-2.46502	-5.99E-5	-4.17E-5
С	-1.76545	-1.19476	-0.19677
С	-0.37539	-1.19555	-0.19165
С	3.82479	-3.57945	-0.64159
С	4.52312	-4.76443	-0.85218
С	5.9196	-4.76611	-0.84269
С	6.61648	-3.57625	-0.62159
С	5.92207	-2.389	-0.41098
С	3.8247	3.57947	0.64158
С	4.523	4.76447	0.85219
С	5.91948	4.76618	0.84275
С	6.61639	3.57634	0.62165
С	5.92201	2.38907	0.41101

Ν	-3.89002	-8.2E-5	-3.7E-5
С	-4.59946	0.50385	-1.10631
С	-6.00549	0.49482	-1.07762
О	-6.71246	-5.01E-5	1.49E-5
С	-6.00547	-0.49486	1.07765
С	-4.59943	-0.50393	1.1063
С	-3.96425	0.99614	-2.24997
С	-4.71028	1.48478	-3.32588
С	-6.09995	1.48186	-3.27791
С	-6.74587	0.97931	-2.14468
С	-6.74581	-0.97928	2.14478
С	-6.09986	-1.48179	3.27801
С	-4.71019	-1.48474	3.32592
С	-3.96419	-0.99618	2.24995
Н	0.18087	2.11224	0.34297
Н	-2.32282	2.11234	0.35067
Н	-2.32277	-2.11246	-0.35075
Н	0.18092	-2.11229	-0.34305
Н	2.74183	-3.56086	-0.64616
Н	3.97938	-5.68811	-1.0241
Н	6.463	-5.69168	-1.00715
Н	7.702	-3.57528	-0.61365
Н	6.44682	-1.45737	-0.23803
Н	2.74174	3.56087	0.64612
Н	3.97923	5.68814	1.02411
Н	6.46285	5.69176	1.00723
Н	7.70191	3.57538	0.61375
Н	6.44678	1.45745	0.23808
Н	-2.88243	0.99465	-2.29673
Н	-4.19104	1.86334	-4.2002
Н	-6.68487	1.8604	-4.10916
Н	-7.82743	0.95091	-2.0696
Н	-7.82737	-0.95084	2.06974
Н	-6.68476	-1.86027	4.1093
Н	-4.19093	-1.86328	4.20023
Н	-2.88236	-0.99471	2.29667

PX-SF-B:

Element	Х	Y	Z

С	2.20473	1.93831	-0.62124
С	2.54921	1.14297	0.48742
С	1.9168	1.40878	1.71645
С	0.94251	2.39419	1.83214
С	0.57719	3.10848	0.69044
С	1.20744	2.90601	-0.53688
S	-0.87557	4.15986	0.75894
С	-2.13528	2.94235	0.3552
С	-2.47976	2.74229	-0.98001
С	-3.32875	1.68694	-1.30556
С	-3.80288	0.83781	-0.30238
С	-3.47315	1.06982	1.03774
С	-2.63782	2.13054	1.3725
0	-0.80719	5.12633	-0.34762
0	-1.07878	4.5815	2.15323
Ν	-4.59168	-0.29424	-0.65773
В	3.53574	-0.06417	0.32599
С	-3.94401	-1.47578	-1.07541
С	-4.71587	-2.62783	-1.30745
0	-6.08523	-2.63495	-1.13659
С	-6.67792	-1.52561	-0.56597
С	-5.95899	-0.34286	-0.32122
С	-2.56145	-1.55411	-1.26741
С	-1.96892	-2.74353	-1.70151
С	-2.74601	-3.87312	-1.93446
С	-4.12696	-3.81039	-1.72865
С	-8.02739	-1.61725	-0.26254
С	-8.69987	-0.52018	0.28328
С	-8.00408	0.66092	0.51789
С	-6.64243	0.75066	0.21687
С	3.30063	-1.3302	1.21918
С	4.68258	0.02208	-0.73587
С	4.36878	-1.88441	1.97017
С	4.14835	-3.00024	2.7792
С	2.89954	-3.62184	2.85276
С	1.85787	-3.09035	2.09137
С	2.02987	-1.95478	1.29557
С	4.86313	-1.00879	-1.69433
С	5.87246	-0.90069	-2.65167
С	6.75116	0.18589	-2.6779
С	6.58394	1.18654	-1.72056
С	5.56408	1.13076	-0.7669
С	7.86421	0.25414	-3.69243

С	2.68077	-4.8183	3.74338
С	5.76116	-1.29173	1.93204
С	0.83042	-1.4707	0.50468
С	3.9746	-2.23392	-1.72788
С	5.46859	2.26698	0.23077
Н	2.70975	1.76728	-1.56725
Н	2.17841	0.80934	2.58322
Н	0.44883	2.59949	2.77547
Н	0.91117	3.49586	-1.3972
Н	-2.08454	3.40559	-1.74076
Н	-3.614	1.49578	-2.33413
Н	-3.86476	0.4069	1.80153
Н	-2.36193	2.32548	2.40248
Н	-1.94701	-0.68222	-1.08107
Н	-0.89544	-2.7725	-1.8545
Н	-2.29205	-4.79867	-2.27147
Н	-4.76812	-4.66966	-1.8919
Н	-8.53464	-2.5537	-0.46712
Н	-9.75648	-0.59646	0.51569
Н	-8.51163	1.52485	0.93394
Н	-6.10783	1.67572	0.39468
Н	4.9751	-3.4025	3.36012
Н	0.88399	-3.57414	2.11533
Н	5.98234	-1.68934	-3.3926
Н	7.26521	2.03434	-1.71585
Н	7.52636	-0.08076	-4.67804
Н	8.25258	1.27124	-3.7918
Н	8.70156	-0.39193	-3.40173
Н	2.42507	-4.50662	4.76366
Н	1.86111	-5.44377	3.37881
Н	3.58058	-5.43703	3.80992
Н	5.75757	-0.21548	2.1304
Н	6.40062	-1.76362	2.6825
Н	6.22793	-1.429	0.95258
Н	0.11022	-2.28091	0.36748
Н	0.31079	-0.65372	1.01591
Н	1.10323	-1.09441	-0.48498
Н	2.912	-1.97346	-1.7574
Н	4.19063	-2.84037	-2.61126
Н	4.12026	-2.85796	-0.84202
Н	6.43681	2.7634	0.3393
Н	4.74387	3.02271	-0.08941
Н	5.15342	1.93102	1.22152

Element	X	Y	Z
С	5.33567	1.54785	-1.6094
С	5.65912	2.39139	-0.54453
С	5.35552	2.02198	0.76759
С	4.71865	0.80865	1.02178
С	4.39488	-0.01841	-0.0533
С	4.69878	0.33181	-1.3684
S	3.55154	-1.56995	0.26314
С	1.81469	-1.11617	0.19446
С	1.17357	-0.70317	1.36211
С	-0.16738	-0.33441	1.30055
С	-0.8476	-0.37159	0.07901
С	-0.19295	-0.79411	-1.08241
С	1.14493	-1.17541	-1.02725
0	3.84691	-1.96395	1.64947
Ν	-2.21554	0.01779	0.01948
С	-2.56458	1.38125	0.05187
С	-3.92418	1.73742	0.00486
0	-4.92606	0.79204	-0.07822
С	-4.57053	-0.54176	-0.11628
С	-3.22843	-0.95728	-0.06535
С	-5.60136	-1.46478	-0.19879
С	-5.31837	-2.8334	-0.22615
С	-3.99606	-3.25886	-0.16423
С	-2.95702	-2.32795	-0.08112
С	-1.61267	2.40296	0.10814
С	-2.0066	3.74356	0.13639
С	-3.35505	4.08096	0.10181
С	-4.31497	3.06714	0.03265
0	3.81587	-2.46191	-0.87662
Н	5.58523	1.83369	-2.62609
Н	6.1561	3.33696	-0.73731
Н	5.62057	2.67513	1.59269
Н	4.49153	0.48915	2.03242
Н	4.45662	-0.35012	-2.17545
Н	1.71517	-0.70125	2.30094
Н	-0.70005	-0.0184	2.19072
Н	-0.74321	-0.82484	-2.01638
Н	1.66716	-1.52566	-1.91005
Н	-6.61884	-1.09143	-0.23718

Н	-6.12932	-3.55061	-0.29117
Н	-3.75746	-4.31715	-0.17643
Н	-1.93012	-2.66754	-0.0254
Н	-0.56044	2.14734	0.12811
Н	-1.24707	4.51704	0.18237
Н	-3.66792	5.11919	0.12415
Н	-5.37615	3.28776	-0.00371

5. References

1. K. Goushi, K. Yoshida, K. Sato and C. Adachi, Nat. Photon., 2012, 6, 253-258.