Solution-processed AgBiS₂ Photodetectors from Molecular Precursors

Li Jiang[†], Yuwei Li[†], Jiali Peng[†], Lihao Cui[†], Ruiming Li[†], Yalun Xu[†], Wei Li[†], Yanyan Li[†], Xiaoyu Tian[†] and Qianqian Lin[†]*

[†]Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China

Corresponding Authors:

*Email: <u>q.lin@whu.edu.cn;</u>

Supporting figures

Fig. S1 SEM images of $AgBiS_2$ films annealed at different initial temperatures.

Fig. S2 (a) Comparison of AgBiS₂ films annealed at initial temperature of 100°C and **(b)** the final optical photos of the obtained films annealed at 200°C with various thiourea/metal ratios.

Fig. S3 (a) XRD patterns and **(b)** absorption spectra of AgBiS₂ films with or without water treatment.

Fig. S4 J-V curves of AgBiS₂ devices annealed at different initial temperatures.

Fig. S5 *J-V* curves of AgBiS₂ devices prepared with different Tu/M ratios.

$V_{\rm oc}({ m V})$	FF (%)	PCE (%)	Humidity (%)
0.06	25.9	0.07	70%~80%
0.21	18.3	0.29	60%~70%
0.19	38.5	0.77	50%~60%
0.25	39.5	1.53	40%~45%
0.21	34	1.3	35%~40%
0.25	40.1	0.82	~30%
0.07	33.3	0.17	Glovebox
	V _{oc} (V) 0.06 0.21 0.19 0.25 0.21 0.25 0.25 0.07	V_{oc} (V)FF (%)0.0625.90.2118.30.1938.50.2539.50.21340.2540.10.0733.3	V_{oc} (V)FF (%)PCE (%)0.0625.90.070.2118.30.290.1938.50.770.2539.51.530.21341.30.2540.10.820.0733.30.17

Table S1 Summary of device performance of $AgBiS_2$ photodiodes fabricated at differenthumidity levels.

Fig. S6 Comparison of (a) dark and photocurrent and (b) noise density spectra of AgBiS₂ photodetectors with various active layer film thicknesses.

Fig. S7 Noise density of optimized AgBiS₂ photodetectors measured at -0.1 V.

Fig. S8 EQE spectra of AgBiS₂ photodetectors measured at different bias voltage.

Fig. S9 Repeated photoresponse for a number of cycles under a modulated 630 nm LED.

Fig. S10 Open-circuit tracking of $AgBiS_2$ photodiodes (a) in air and (b) in water lasting for one minute under white light LED irradiation.