Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Electrode-controlled confinement of conductive filaments in nanocolumn embedded

symmetric-asymmetric RRAM structure

Wen Xiao,^{a,b} Wendong Song,^{*,a} Yuan Ping Feng,^c Daqiang Gao,^b Yao Zhu,^a Jun Ding^{*,b}

*Corresponding authors

^aInstitute of Microelectronics, Agency for Science, Technology and Research (A*STAR), 2

Fusionopolis Way, #08-02 Innovis, Singapore 138634, Singapore

E-mail: song_wen_dong@ime.a-star.edu.sg

^bDepartment of Materials Science and Engineering, National University of Singapore, 9

Engineering Drive 1, Singapore 117575, Singapore

Email: msedingj@nus.edu.sg

^cDepartment of Physics, National University of Singapore, 2 Science Drive 3, Singapore

117542, Singapore

Experimental

Synthesis

A ~50 nm Ta film was firstly deposited on 1μ m-SiO₂/Si substrate by sputtering. After that, a ~5 nm Fe₃O₄ nanocolumn film was assembled on the Ta film by pulsed laser deposition (PLD) at 300 °^C under oxygen partial pressure of 5×10⁻⁶ Torr using laser energy of 250 mJ and high laser frequency of 10 Hz.¹ The Fe₃O₄ nanocolumn and Ta film form nanocolumn Fe₃O₄-Ta bottom electrode. After cooling down, a ~10 nm Ta₂O₅ film was further deposited at room temperature under oxygen partial pressure of 1 mTorr. The laser energy and deposition frequency were set to be 250 mJ and 5 Hz respectively. Then, a continuous Fe₃O₄ film was deposited through a shadow mask on top of the Ta₂O₅ film at 300 °^C under oxygen partial pressure of 5×10⁻⁶ Torr with low laser frequency of 2 Hz. Finally, a Ru contact plug of ~20 nm in thickness was deposited through the shadow mask on top of the continuous Fe₃O₄ film by sputtering. The shape of the RRAM cell was round with a diameter of 100 μ m determined by the shadow mask.

Characterizations

Thin film X-ray diffractometry (XRD; Bruker D8 Advance) with a Cu $K\alpha$ (1.5418 Å) source was employed to characterize the crystal structure of the Fe₃O₄ layer. Current-voltage (I-V) characteristics were measured using Keithley 2635B SourceMeter SMU Instrument with direct-current (dc) voltage sweeping mode. Temperature-dependent resistance (RT) measurements were taken using physical property measurement system (PPMS EverCool-II; Quantum Design). Constant-current mode with an excitation current of 0.1 μ *A* was used for the RT measurements. Transmission electron microscopy (TEM; Tecnai G2 F20 X-TWIN at 200 kV) analyses were carried out to study the microstructures of the RRAM cell. Electron energy loss spectroscopy (EELS; Attachment of TEM) was used to analyze the elemental distribution of the RRAM cell. Cross-sectional TEM sample was prepared by focused ion beam milling (FIB; Defect Analyzer DA300).

First-principles calculations

Vienna ab initio simulation package (VASP) was used to perform first-principles calculations based on density functional theory (DFT).² Electron-ion interaction was modeled using projector augmented wave (PAW) potentials.³ Exchange and correlation effects were approximated using generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) functional for structural relaxation.^{4, 5} It is noted that HSE06 functional was further applied for density of states (DOS) and electrostatic potential calculations.^{6, 7} The effective on-site Coulomb and exchange parameters, U-J, were set to be 1.35 eV and 3.61 eV to describe the Coulomb and exchange interaction of Ta and Fe respectively.^{8, 9} The cutoff energy was set at 400 eV for the plane-wave basis restriction in all calculations. K-points were sampled under Monkhorst-Pack scheme for the Brillouin-zone integration.¹⁰ All atoms were fully relaxed until the acting forces were <0.02 eV/Å. A self-consistency accuracy of 10⁻⁴ eV was researched for electronic loops. The simulated lattice constants of an unstrained bulk λ -Ta₂O₅ unit cell are a = 6.24 Å, b = 7.35 Å and c = 3.83 Å.¹¹ The formation energies of interstitial oxygen (O_i) in neutral state were calculated using the following equation: $E_{f}^{O_{i}} = E_{tot}^{O_{i}} - E_{tot}^{O} - \mu_{O}$, where $E_{tot}^{O_{i}}$ is the total DFT energy of the supercell with an interstitial oxygen, E_{tot}^{0} is the total energy of the corresponding supercell without O_i , μ_0 is the chemical potential of the O atom. The actual chemical potential μ_0 depends on the surrounding environment, varying from O-rich to O-

poor conditions. In O-rich condition, $\mu_0 = \frac{1}{2}E_{02}$, where E_{02} is the total DFT energy of an isolated oxygen molecule in vacuum. In O-poor (Ta-rich) condition, $\mu_0 = \frac{1}{5}[E_{Ta2O5} - 2E_{Ta}^{Metal}]$,

where E_{Ta}^{Metal} is the DFT energy of per Ta atom in metallic tantalum. The μ_0 in O-rich condition was taken as reference with its upper bound (O-rich) set at 0 eV. The condition sets the lower bound (O-poor) of μ_0 to be -4.59 eV. The energy barriers for V₀ migration in Ta₂O₅ were calculated by the nudged elastic band (NEB) method as implanted in VASP.¹² After relaxation of the NEB images, the maximum residual forces acting on all atoms were <0.02 eV/Å.

Amorphous Ta₂O₅ model was generated using melt quenching method by firstprinciples molecular dynamics as implemented in VASP. Firstly, the crystalline λ -Ta₂O₅ (Ta₃₂O₈₀) was melted at 6000 K for 9 ps and then cooled down to 300 K with a cooling rate of 4 K/3 fs. After that, the structure was equilibrated at 300 K for 9 ps. Finally, the obtained bulk amorphous Ta₃₂O₈₀ structure was fully relaxed until the acting forces on all atoms were <0.02 *eV*/Å. The mass density of bulk amorphous and crystalline Ta₂O₅ structure was kept the same (8.2 g/cm³).¹¹ Fig. S1† shows atomic structure of the relaxed amorphous Ta₃₂O₈₀ (inset) and the corresponding total radical distribution functions. The characteristic bond lengths for interaction pairs of Ta-O, O-O and Ta-Ta agrees well with literature reports.^{13, 14}

Interface models of vacuum/Ta₂O₅/Ta (001), vacuum/Ta₂O₅/Au (111) and vacuum/Ta₂O₅/Fe₃O₄ (111) were constructed by joining amorphous Ta₃₂O₈₀ and crystalline slabs of body-centered cubic (BCC) Ta (a = 3.32 Å), face-centered cubic (FCC) Au (a = 4.08 Å) and spinel Fe₃O₄ (a = 8.406 Å) respectively.^{1, 15, 16} A vacuum slab of 10 nm was used in all interface models. Relaxed atomic structures of the three interfaces are shown in Fig. S2a-c†. Fig. S2d illustrates that the Fe₃O₄ electrode in our experimental RRAM device is textured in (111) orientation. Thus, the most stable Fe₃O₄ Fe_{tet1}-O₁-(111)

surface termination was used to build the interface model.^{1, 17} The n-type Schottky barrier height at the interface was calculated by $\phi_B = E^{Ta205_bulk} - E^{Electode_bulk} + \Delta V$. $E^{Ta205_bulk}_{CBM}$ and $E^{Elecrode_bulk}$ are the conduction band edge of bulk amorphous Ta₂O₅ and Fermi level of bulk electrode material (Ta, Au or Fe₃O₄) respectively and are calculated with respect to the average electrostatic potential in the corresponding bulk supercell. ΔV is the potential step form at the Ta₂O₅/electrode (Ta, Au or Fe₃O₄) interface and is determined by the difference between macroscopic averages of electrostatic potential in the Ta₂O₅ and corresponding electrode's bulk-like regions of the interface model.¹⁸

Fig. S1 Atomic structure of the relaxed amorphous $Ta_{32}O_{80}$ (inset) and the corresponding total radical distribution functions.

Fig. S2 Interfaces of (a) Ta_2O_5/Ta (001), (b) Ta_2O_5/Au (111) and (c) Ta_2O_5/Fe_3O_4 (111). (d) XRD spectrum of a nanocolumn $Fe_3O_4/Ta_2O_5/Fe_3O_4$ -Ta RRAM cell with a top Ru contact plug.

Fig. S3 Migration energy barrier and path of an oxygen vacancy (V_0) in amorphous Ta₂O₅.

Fig. S4 Current-voltage (IV) characteristic of Fe₃O₄/Ta₂O₅ (15 nm)/Ta RRAM cell.

Fig. S5 (a) Schematic and (b) TEM image of a symmetric $Fe_3O_4/Ta_2O_5/Fe_3O_4$ architecture, and (c) the corresponding current-voltage (IV) characteristic.

A inert-inert electrode symmetric architecture is demonstrated using Fe_3O_4 as inert electrodes and Ta_2O_5 as resistive switching oxide. As shown in Fig. S5a-b, two continuous Fe_3O_4 electrode layers sandwich the Ta_2O_5 layer forming a symmetric $Fe_3O_4/Ta_2O_5/Fe_3O_4$ architecture. Current-voltage (IV) characteristic of the architecture in Fig. S5c shows that the resistance remains high (5×10⁶ Ω) and unchanged with a small leakage current below 4×10⁻⁷ A, when applying a voltage ≤2 V with either positive or negative polarity. It indicates that no conduction path forms in the Ta_2O_5 sandwiched by two Fe_3O_4 inert electrodes and the symmetric architecture effectively blocks current flow.

Fig. S6 Resistive switching endurance of (a) asymmetric Fe_3O_4/Ta_2O_5 (10 nm)/Ta and (b) nanocolumn symmetric-asymmetric $Fe_3O_4/Ta_2O_5/Fe_3O_4$ -Ta RRAM cells. (c) Retention characteristic of the nanocolumn $Fe_3O_4/Ta_2O_5/Fe_3O_4$ -Ta RRAM cell at room temperature.

Fig. S7 (a) Schematic and (b) temperature-dependent resistance (RT) curves for the nanocolumn $Au/Ta_2O_5/Fe_3O_4$ -Ta RRAM cell in IRS (red circle), HRS (orange dot) and LRS (purple triangle). (c) Current-voltage (IV) characteristic of the nanocolumn $Au/Ta_2O_5/Fe_3O_4$ -Ta RRAM cell.

References

- 1. T. Herng, W. Xiao, S. Poh, F. He, R. Sutarto, X. Zhu, R. Li, X. Yin, C. Diao, Y. Yang, X. Huang, X. Yu, Y. Feng, A. Rusydi and J. Ding, *Nano Res.*, 2015, **8**, 2935-2945.
- 2. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 3. P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 4. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, *Phys. Rev. B*, 1992, **46**, 6671-6687.
- 5. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 6. J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys., 2003, 118, 8207-8215.
- 7. J. Heyd, J. E. Peralta, G. E. Scuseria and R. L. Martin, J. Chem. Phys., 2005, 123, 174101.
- 8. M. Cococcioni and S. de Gironcoli, *Phys. Rev. B*, 2005, **71**, 035105.
- 9. M. V. Ivanov, T. V. Perevalov, V. S. Aliev, V. A. Gritsenko and V. V. Kaichev, *J. Appl. Phys.*, 2011, **110**, 024115.
- 10. H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.
- 11. S.-H. Lee, J. Kim, S.-J. Kim, S. Kim and G.-S. Park, *Phys. Rev. Lett.*, 2013, **110**, 235502.
- 12. H. Jónsson, G. Mills and K. W. Jacobsen, 1998.
- 13. Y.-N. Wu, L. Li and H.-P. Cheng, *Phys. Rev. B*, 2011, **83**, 144105.
- 14. R. Bassiri, K. Borisenko, D. Cockayne, J. Hough, I. MacLaren and S. Rowan, *Appl. Phys. Lett.*, 2011, **98**, 031904.
- 15. R. J. Bondi and M. J. Marinella, J. Appl. Phys., 2015, 117, 085308.
- R. M. Fleming, D. V. Lang, C. D. W. Jones, M. L. Steigerwald, D. W. Murphy, G. B. Alers, Y.-H. Wong, R. B. van Dover, J. R. Kwo and A. M. Sergent, *J. Appl. Phys.*, 2000, 88, 850-862.
- 17. M. E. Grillo, M. W. Finnis and W. Ranke, *Phys. Rev. B*, 2008, **77**, 075407.
- 18. D. Demchenko and A. Y. Liu, *Phys. Rev. B*, 2006, **73**, 115332.