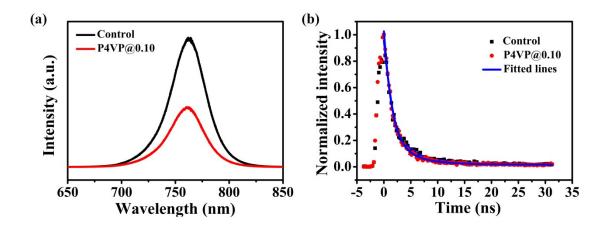
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

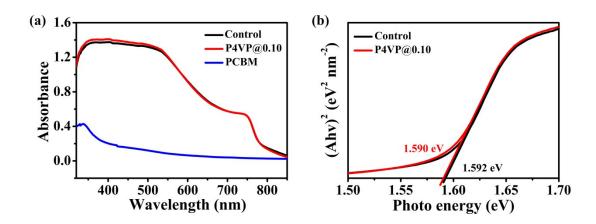
Polymer interface engineering enabling high-performance perovskite solar cells with improved fill factor over 82%

Quanzeng Zhang ^a, Shaobing Xiong^b, Jazib Ali^a, Kun Qian^a, Yu Li^{a, c}, Wei Feng^d, Hailin Hu^e, Jingnan Song*^a and Feng Liu*^{a, c}

^aSchool of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China


^bKey Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, 200241 Shanghai, PR China

^cSchool of Chemistry and Chemical Engineering, and Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, 200240, Shanghai, China


^dState Key Laboratory of Fluorinated Materials, Zibo City, Shandong 256401, China.

^eInstituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/N, 62580 Temixco, Morelos, Mexico

 $*Address\ correspondence\ to:\ sjn199319@sjtu.edu.cn,\ fengliu82@sjtu.edu.cn$

Fig. S1 (a) Photoluminescence (PL) spectra and (b) time-resolved photoluminescence (TRPL) spectra of perovskite films with PCBM capping layer.

Fig. S2 (a) UV-vis absorption spectra and (b) Tauc plots of the control perovskite film, P4VP modified perovskite film, and electron-transporting layer (PCBM) (Inset in Fig. S2b).

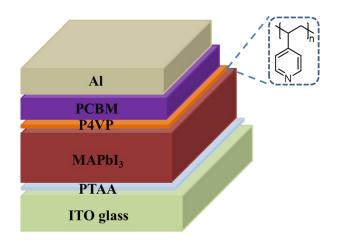
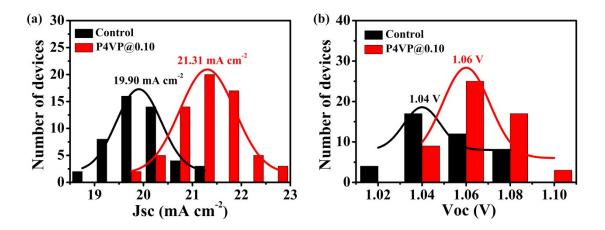
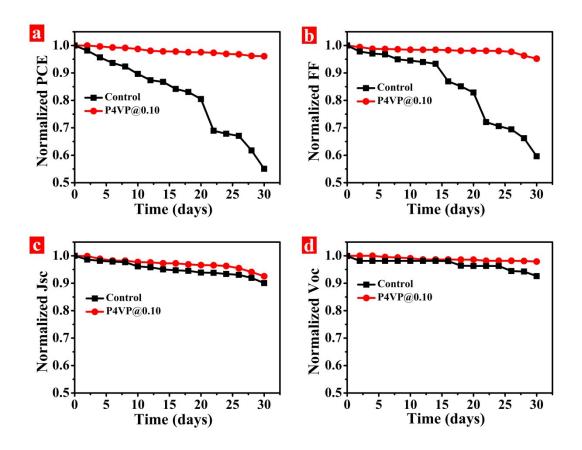




Fig. S3 Device structure of MAPbI₃ based perovskite solar cells.

Fig. S4 Histogram of short current density (J_{sc}) and open-circuit voltage (V_{oc}) for the control and P4VP modified samples. All the black/red lines were obtained by fitting the histograms using Gaussian function.

Fig. S5 Stability evaluation of the control and optimal devices, which were stored in nitrogen atmosphere for 30 days.

Table S1 Fitting parameters for time-resolved photoluminescence (TRPL) spectra obtained by illuminating glass/MAPbI₃ and glass/MAPbI₃/P4VP@0.10.

	τ ₁ (ns)	Frac. τ ₁ (%)	τ ₂ (ns)	Frac. τ ₂ (%)	Lifetime (ns)
Control	4.40	58.50	25.47	41.50	13.14
P4VP@0.10	4.74	52.38	42.41	47.62	22.67

Table S2 Fitting parameters for TRPL spectra obtained by illuminating glass/MAPbI₃/PCBM and glass/MAPbI₃/P4VP@0.10/PCBM.

	τ ₁ (ns)	Frac. τ ₁ (%)	τ_2 (ns)	Frac. τ ₂ (%)	Lifetime (ns)
Control	1.35	72.35	5.28	27.65	2.44
P4VP@0.10	1.51	80.92	4.95	19.08	2.17