Supporting Information: A systematic analysis of excitonic properties to seek optimal singlet fission: the BN-substitution patterns in tetracene

Max Pinheiro Jr,*,[†] Francisco B. C. Machado,*,[†] Felix Plasser,[‡] Adelia J. A. Aquino,^{¶,§,||} and Hans Lischka^{*,¶,§,⊥}

†Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900, São Paulo, Brasil

 $\ddagger Department of Chemistry, Loughborough University, UK$

¶Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA

§School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, 300072 P.R. China

||Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria

⊥Institute for Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria

E-mail: maxjr82@gmail.com; fmachado@ita.br; hans.lischka@univie.ac.at

Figure S1: Chemical structures of the BN-doping configurations for tetracene. The fused hexagon rings that satisfy the Clar sextet rule of $4n + 2\pi$ -electrons are highlighted in red.

Table S1: B,N distances (in Å), vertical excitation energies $\Delta E(S_1, T_1, T_2)$ relative to the ground-state S_0 (in eV) and oscillator strength for S_0 - S_1 transitions (f^{osc}) calculated for the series of BN-doped tetracene molecules using the CAS(12,12)/NEVPT2 approach. Rows highlighted in red (yellow) indicate the BN-tetracene molecules exhibiting exoergic (slight isoergic, SFC1 < 0.25 eV) singlet fission condition (SFC).

B,N	$\mathbf{d}_{B,N}$	$E_{tot}(S_0)$	$\Delta E(S_1)$	\mathbf{f}^{osc}	$\Delta E(T_1)$	$\Delta E(T_2)$	SFC1	SFC2
1,2	1.4154	-18922.809	3.177	0.115	2.116	3.328	1.055	0.905
2,3	1.4572	-18921.993	2.079	0.044	0.945	2.397	-0.189	-0.507
$5,\!18$	1.4898	-18922.275	2.553	0.060	1.320	2.952	0.087	-0.312
$7,\!16$	1.4991	-18921.876	2.893	0.017	1.813	2.225	0.733	1.401
18,2	2.4564	-18921.049	2.461	0.021	1.275	2.646	0.088	-0.097
1,3	2.4882	-18921.178	2.791	0.068	1.324	2.261	-0.143	0.386
7,5	2.4948	-18921.058	2.624	0.039	1.640	2.498	0.657	0.783
5,7	2.4992	-18921.046	2.546	0.070	1.761	2.614	0.977	0.909
18,4	2.4993	-18921.169	2.045	0.040	1.142	2.487	0.238	-0.204
$16,\! 6$	2.5021	-18921.466	2.365	0.032	1.655	2.112	0.945	1.198
4,6	2.5037	-18921.163	1.932	0.025	1.121	2.567	0.311	-0.324
6,8	2.5057	-18921.140	1.371	0.008	0.732	2.979	0.093	-1.516
$2,\!18$	2.5103	-18920.718	2.377	0.056	1.378	2.633	0.379	0.122
6,4	2.5118	-18921.045	1.803	0.022	1.026	2.492	0.249	-0.441
$6,\!16$	2.5475	-18921.089	2.229	0.036	1.758	2.089	1.287	1.427
$4,\!18$	2.5639	-18920.909	1.925	0.066	1.187	2.535	0.448	-0.161
$18,\!3$	2.8118	-18921.060	1.957	0.048	0.954	2.625	-0.048	-0.717
1,4	2.8523	-18921.675	3.407	0.082	1.926	3.382	0.444	0.469
6,17	2.8548	-18922.466	3.439	0.062	2.714	3.636	1.989	1.792
5,16	2.8769	-18920.797	2.747	0.036	1.552	2.800	0.357	0.303
$16,\! 5$	2.8956	-18920.730	2.723	0.039	1.615	2.808	0.507	0.421
3,18	2.9136	-18920.543	1.812	0.046	0.959	2.558	0.106	-0.639
7,4	3.7643	-18920.522	1.868	0.019	1.202	2.176	0.535	0.227
3,6	3.7829	-18921.631	2.433	0.056	2.140	2.665	1.847	1.616
$4,\!17$	3.8130	-18921.285	2.037	0.075	1.843	2.705	1.648	0.980
4,7	3.8181	-18920.330	1.569	0.022	1.107	2.163	0.646	0.052
6,15	3.8303	-18921.576	1.959	0.089	1.847	3.357	1.734	0.336
$17,\!4$	3.8466	-18921.240	1.994	0.115	1.785	2.599	1.577	0.972
$17,\!3$	4.2531	-18920.834	1.650	0.067	0.984	2.561	0.318	-0.592
$14,\! 6$	4.255	-18921.221	1.804	0.020	1.249	1.896	0.694	0.602
3,17	4.2870	-18920.875	1.987	0.068	1.162	2.653	0.337	-0.329
$6,\!14$	4.3470	-18920.817	1.624	0.028	1.269	1.857	0.914	0.680
7,3	4.8975	-18920.621	1.930	0.047	1.545	1.718	1.161	1.373
5,9	4.9304	-18920.587	2.036	0.024	1.663	2.169	1.290	1.157

4,8	4.9413	-18920.392	0.643	0.032	0.400	2.351	0.157	-1.551
3,7	4.9430	-18920.182	1.792	0.079	1.641	1.765	1.491	1.518
8,4	4.9685	-18920.194	0.191	0.009	0.127	2.110	0.063	-1.856
16,3	5.0892	-18920.701	2.060	0.026	1.223	2.555	0.386	-0.109
$5,\!14$	5.1365	-18920.857	2.230	0.107	1.840	2.309	1.450	1.371
3,16	5.1567	-18920.412	1.840	0.019	1.228	2.546	0.615	-0.090
$4,\!15$	5.7601	-18920.855	1.189	0.080	0.972	2.711	0.756	-0.766
$15,\!4$	5.7860	-18920.798	1.259	0.093	0.939	2.744	0.619	-0.865
3,8	6.2054	-18920.892	1.520	0.079	1.354	2.181	1.188	0.526
9,4	6.2200	-18920.417	1.370	0.067	1.168	1.714	0.967	0.623
4,9	6.2292	-18919.733	1.087	0.027	1.024	1.733	0.960	0.315
8,3	6.2374	-18920.710	1.897	0.102	1.439	2.318	0.981	0.560
$6,\!12$	6.4928	-18911.352	0.789	0.037	0.482	2.278	0.176	-1.314
$12,\! 6$	6.5138	-18920.279	0.858	0.007	0.602	2.131	0.346	-0.926
9,3	7.3444	-18920.047	1.369	0.014	1.065	1.849	0.760	0.280
$4,\!10$	7.3862	-18919.785	0.405	0.022	0.104	2.181	-0.196	-1.972
$3,\!9$	7.3882	-18919.898	1.277	0.043	1.111	1.907	0.945	0.315
$14,\!3$	7.4787	-18920.279	1.482	0.080	1.534	1.956	1.585	1.111
$3,\!14$	7.5235	-18920.037	1.477	0.044	1.419	2.030	1.360	0.807
$4,\!13$	7.9999	-18919.889	1.221	0.084	0.553	2.567	-0.114	-1.460
11,4	8.6428	-18920.177	0.972	0.069	0.731	1.940	0.491	-0.477
$4,\!11$	8.6925	-18919.947	1.280	0.120	0.809	2.042	0.338	-0.424
$4,\!12$	8.8309	-18919.804	0.716	0.042	0.378	1.917	0.039	-1.161
$12,\!4$	8.8686	-18919.807	0.441	0.000	0.285	1.805	0.129	-1.234
3,11	9.8024	-18919.745	0.963	0.008	0.688	2.130	0.413	-0.754
3,12	9.9095	-18920.258	1.289	0.103	1.030	2.114	0.771	-0.054

Table S2: Vertical excitation energies $\Delta E(S_1, T_1, T_2)$ relative to the ground-state S_0 (in eV) and oscillator strength for S_0 - S_1 transitions (f^{osc}) calculated for the series of BN-doped tetracene molecules using the CAS(8,8)/MR-CISD+Q approach. Rows highlighted in red (yellow) indicate the BN-tetracene molecules exhibiting exoergic (slight isoergic, SFC1 < 0.25 eV) singlet fission condition (SFC).

$^{\mathrm{B,N}}$	$\Delta \mathbf{E}(\mathbf{S}_1^{Pople})$	$\Delta \mathbf{E}(\mathbf{S}_1^{CI})$	\mathbf{f}^{osc}	$\Delta \mathbf{E}(\mathbf{T}_1^{Pople})$	$\Delta \mathbf{E}(\mathbf{T}_1^{CI})$	$\Delta E(T_2^{Pople})$	$\Delta {\rm E}({\rm T}_2^{CI})$	SFC1	SFC2
1,2	3.3615	4.1830	0.030	1.9591	2.2327	3.2266	3.8419	0.557	0.692
2,3	2.5452	2.8505	0.095	0.9283	1.4024	2.4350	2.2848	-0.689	-0.578
$5,\!18$	3.0726	3.6334	0.102	1.3885	0.9413	3.1390	3.0815	-0.296	-0.362
$7,\!16$	3.1927	3.2575	0.024	1.6811	2.4936	2.1235	2.5372	0.169	1.239
18,2	2.4445	2.3982	0.038	1.2268	0.9914	2.5513	2.5220	0.009	-0.098
1,3	2.9441	3.3670	0.064	1.2117	1.6152	2.2746	2.2042	-0.521	0.149
7,5	2.6790	2.7398	0.029	1.5159	2.0944	2.4280	2.8314	0.353	0.604

5,7	2.5711	2.8513	0.073	1.6768	2.1261	2.5942	2.6951	0.782	0.759
18,4	2.1791	2.3501	0.052	1.1331	0.8554	2.4137	2.5417	0.087	-0.147
$16,\! 6$	2.3130	2.4996	0.070	1.5447	1.4090	2.0020	2.3907	0.776	1.087
4,6	1.7336	1.6917	0.018	0.8549	1.1092	2.2045	2.9572	-0.024	-0.495
6,8	1.4335	1.5832	0.011	0.6757	0.3495	2.7916	2.9061	-0.082	-1.440
$2,\!18$	2.3245	2.3981	0.069	1.2926	1.0819	2.5621	2.6124	0.261	0.023
6,4	1.5290	1.7739	0.014	0.9483	0.6366	2.2875	2.6753	0.368	-0.391
6,16	2.1901	2.5121	0.087	1.6696	1.6245	1.9661	2.4127	1.149	1.373
$4,\!18$	2.0239	2.3227	0.076	1.1609	0.9252	2.4552	2.5899	0.298	-0.133
18,3	2.4249	2.5758	0.078	1.0760	0.4011	2.8348	2.6573	-0.273	-0.683
1,4	2.9074	4.5885	0.130	1.9437	1.9823	3.3470	3.7517	0.980	0.540
6,17	3.0740	4.5200	0.099	2.7217	3.1508	3.7455	4.0787	2.369	1.698
5,16	2.9828	3.4898	0.061	1.5399	1.5219	2.8746	3.1177	0.097	0.205
$16,\! 5$	2.9206	3.4318	0.054	1.5972	1.7043	2.8123	3.1126	0.274	0.382
$3,\!18$	2.2955	2.3011	0.062	1.1254	0.4145	2.8135	2.6585	-0.045	-0.563
7,4	1.8255	2.2558	0.027	1.1452	0.8099	2.2545	1.9729	0.465	0.036
3,6	2.7426	3.8808	0.059	2.3241	3.0539	2.5308	3.6487	1.906	2.117
$_{4,17}$	1.9262	2.6059	0.112	2.0801	2.6339	2.5595	2.5583	2.234	1.601
4,7	1.6096	2.0942	0.027	1.1260	0.9930	2.2427	1.9282	0.642	0.009
$6,\!15$	2.1331	2.4161	0.148	1.9880	1.5891	3.3135	2.9616	1.843	0.663
17,4	1.8475	2.8249	0.187	1.7346	2.1697	2.3954	3.1654	1.622	1.074
17,3	1.7202	1.7644	0.049	0.8261	0.4870	2.5080	2.8904	-0.068	-0.856
$14,\! 6$	1.7323	2.2625	0.021	1.0890	0.9641	1.7611	2.6606	0.446	0.417
$3,\!17$	1.7171	2.0814	0.047	1.0385	0.2783	2.6865	2.6701	0.360	-0.609
$6,\!14$	1.6141	2.2213	0.027	1.1083	1.0758	1.8344	2.4713	0.602	0.382
7,3	1.8079	1.8077	0.067	1.2906	1.3711	1.6914	1.8007	0.773	0.890
5,9	2.0867	2.2926	0.019	1.5692	1.5059	2.0842	2.8117	1.052	1.054
4,8	0.6373	1.0544	0.057	0.3524	0.0324	2.2341	2.4334	0.067	-1.529
3,7	1.6960	1.8639	0.109	1.2749	1.6215	1.7261	1.9067	0.854	0.824
8,4	0.3914	0.4012	0.011	0.0773	-0.0379	1.9933	2.1963	-0.237	-1.839
16,3	2.1614	2.6079	0.030	1.2032	1.3836	2.4178	2.7829	0.245	-0.011
5,14	2.4684	2.6459	0.055	1.7568	2.8359	2.0895	2.7072	1.045	1.424
$_{3,16}$	1.9711	2.3749	0.026	1.2071	1.3592	2.4650	2.6044	0.443	-0.051
4,15	1.4001	2.1432	0.190	1.0845	0.8837	2.7297	2.8876	0.769	-0.561
$15,\!4$	1.4700	2.1484	0.182	0.9987	1.1516	2.6689	2.9485	0.527	-0.671
3,8	1.7999	2.5857	0.195	1.3691	1.6071	2.2428	3.0960	0.938	0.495
$_{9,4}$	1.3755	1.8744	0.099	1.0869	1.6849	1.5028	2.0029	0.798	0.671
4,9	1.2961	1.8028	0.094	1.0127	1.4475	1.6052	2.1352	0.729	0.420
8,3	1.7067	2.8519	0.332	1.4589	1.2139	2.2584	2.9487	1.211	0.659
6,12	0.8587	0.7135	0.034	0.2713	0.1486	2.1324	2.2335	-0.316	-1.590
$12,\!6$	0.7508	0.8390	0.007	0.3761	0.1716	2.0110	2.4817	0.001	-1.259
9,3	1.2550	1.3244	0.010	0.8482	0.6557	1.7115	1.9204	0.441	-0.015
4,10	0.6228	0.8347	0.070	0.0782	-0.0606	2.0123	2.3509	-0.466	-1.856
$3,\!9$	1.2500	1.3480	0.028	0.8460	0.7622	1.6944	1.8321	0.442	-0.002
$14,\!3$	1.8733	2.2167	0.132	1.5426	1.7243	1.9009	1.9668	1.212	1.184
$3,\!14$	1.8563	2.1266	0.111	1.4055	1.5706	1.8058	2.4095	0.955	1.005

4,13	1.1712	1.8479	0.177	0.6233	0.5219	2.3911	2.8790	0.075	-1.144
11,4	1.3528	1.9661	0.199	0.7598	1.0682	2.1369	2.4755	0.167	-0.617
4,11	1.3268	2.3529	0.236	0.7606	0.8865	1.8033	3.0435	0.194	-0.282
4,12	0.7119	1.2021	0.110	0.2122	0.1398	1.8774	2.3849	-0.288	-1.453
12,4	0.0937	0.5329	0.007	-0.0573	-0.0395	1.5414	1.8836	-0.208	-1.656
3,11	0.6038	0.4739	0.019	0.2170	-0.0388	1.6796	2.2907	-0.170	-1.245
3,12	1.5850	2.5408	0.291	0.9590	1.5038	2.2794	2.3853	0.333	-0.361

Figure S2: Box plot comparing the statistical distribution of the most relevant excited state energies $\Delta E(S_1, T_1, T_2)$ for singlet fission calculated using both NEVPT2 and MR-CISD+Q (Pople's correction) methods.

Table S3: B,N distances (in Å), vertical ionization potential and electron affinity, and binding energy of the singlet and triplet excitons (in eV) calculated for the series of BN-doped tetracene molecules using the CAS(12,12)/NEVPT2 approach.

$^{\mathrm{B,N}}$	$\mathrm{d}_{B,N}$	IP	EA	\mathbf{E}^{s}_{bin}	\mathbf{E}_{bin}^{t}
1,2	1.4154	7.26940	0.73864	3.35383	4.41458
2,3	1.4572	6.29797	1.26088	2.95770	4.09177
$5,\!18$	1.4898	6.30721	1.32375	2.43051	3.66341
$7,\!16$	1.4991	7.01678	0.79948	3.32421	4.40412
$18,\!2$	2.4564	6.29716	0.94354	2.89257	4.07907
1,3	2.4882	6.54350	1.31800	2.43494	3.90164
7,5	2.4948	6.78450	0.81866	3.34198	4.32562
5,7	2.4992	6.91849	1.10139	3.27139	4.05582

18,4	2.4993	6.61639	1.08300	3.48837	4.39165
$16,\! 6$	2.5021	7.00685	1.18880	3.45303	4.16327
$4,\!6$	2.5037	6.12741	0.49805	3.69711	4.50792
6,8	2.5057	6.07729	1.52284	3.18370	3.82279
$2,\!18$	2.5103	6.74986	1.30341	3.06956	4.06874
6,4	2.5118	6.57212	1.31646	3.45296	4.23001
$6,\!16$	2.5475	6.42995	0.72381	3.47734	3.94804
$4,\!18$	2.5639	6.21981	1.27784	3.01655	3.75525
18,3	2.8118	6.29970	1.03430	3.30852	4.31101
1,4	2.8523	6.79062	0.86298	2.52064	4.00200
6,17	2.8548	7.25931	0.60519	3.21552	3.94011
5,16	2.8769	6.54105	0.78032	3.01404	4.20903
16,5	2.8956	6.83840	1.06565	3.05022	4.15808
3,18	2.9136	6.43673	1.36218	3.26211	4.11524
$7,\!4$	3.7643	6.64010	1.19086	3.58096	4.24750
3,6	3.7829	5.83810	0.55663	2.84817	3.14121
$4,\!17$	3.8130	6.71819	0.66425	4.01695	4.21129
4,7	3.8181	5.54276	2.05819	1.91526	2.37709
6,15	3.8303	6.37103	1.09715	3.31447	3.42718
$17,\!4$	3.8466	6.44700	1.57522	2.87816	3.08641
$17,\!3$	4.2531	6.64628	1.65573	3.34034	4.00634
$14,\! 6$	4.2546	7.17047	1.43616	3.93047	4.48563
3,17	4.2870	5.92199	0.73380	3.20078	4.02586
$6,\!14$	4.3470	6.27300	0.88816	3.76114	4.11619
7,3	4.8975	6.46082	0.61345	3.91778	4.30193
5,9	4.9304	6.79807	0.96546	3.79690	4.16986
$4,\!8$	4.9413	5.75284	1.34821	3.76209	4.00495
3,7	4.9430	6.36562	1.39447	3.17963	3.32968
8,4	4.9685	5.59500	1.81926	3.58450	3.64877
$16,\! 3$	5.0892	6.36870	1.07819	3.23080	4.06747
$5,\!14$	5.1365	7.36825	0.80969	4.32894	4.71869
3,16	5.1567	6.01054	1.29983	2.87029	3.48290
$4,\!15$	5.7601	5.50482	1.75390	2.56216	2.77871
$15,\!4$	5.7860	6.04613	1.90953	2.87715	3.19737
3,8	6.2054	5.77054	0.78684	3.46375	3.62980
9,4	6.2200	6.55026	1.59265	3.58752	3.78929
$4,\!9$	6.2292	5.81941	1.57262	3.15953	3.22302
8,3	6.2374	6.60463	1.66760	3.04012	3.49812
$6,\!12$	6.4928	6.02164	1.84852	3.38456	3.69072
$12,\! 6$	6.5138	5.99149	1.13531	3.99780	4.25375
9,3	7.3444	6.56975	1.50301	3.69746	4.00196

$4,\!10$	7.3862	5.50992	2.07471	3.03030	3.33099
$_{3,9}$	7.3882	6.34030	1.31290	3.75002	3.91630
$14,\!3$	7.4787	6.37327	1.73373	3.15736	3.10588
$3,\!14$	7.5235	5.78582	1.49784	2.81073	2.86948
$4,\!13$	7.9999	5.58590	2.02209	2.34248	3.01036
$11,\!4$	8.6428	5.62171	1.95582	2.69414	2.93456
4,11	8.6925	5.66947	1.84090	2.54901	3.01963
$4,\!12$	8.8309	5.94434	1.90071	3.32721	3.66569
$12,\!4$	8.8686	4.84848	2.08981	2.31738	2.47355
$3,\!11$	9.8024	5.58329	1.63255	2.98781	3.26281
3,12	9.9095	6.15461	1.46698	3.39816	3.65741

Table S4: B,N distances and root-mean square electron-hole separation ($d_{B,N}$ and d_{exc} in Å), promotion number p, single-excitation character Ω and participation ratios of the natural transition orbitals PR_{NTO} calculated for the series of BN-doped tetracene molecules using the CAS(8,8)/MR-CISD method.

$^{\mathrm{B,N}}$	$\mathbf{d}_{B,N}$	d_{exc}	p	Ω	PR_{NTO}
1,2	1.4154	3.882	1.11256	0.700	1.759
2,3	1.4572	4.523	1.64033	0.533	1.090
$5,\!18$	1.4898	3.889	1.52620	0.607	1.124
$7,\!16$	1.4991	3.733	1.61777	0.452	1.451
$18,\!2$	2.4564	4.071	1.21117	0.572	1.408
1,3	2.4882	4.038	1.52692	0.459	1.210
7,5	2.4948	3.999	1.21817	0.612	1.577
5,7	2.4992	3.750	1.22638	0.633	1.391
$18,\!4$	2.4993	3.534	1.32284	0.566	1.252
$16,\! 6$	2.5021	3.576	1.34729	0.585	1.194
4,6	2.5037	4.178	1.30738	0.685	1.088
6,8	2.5057	3.686	1.18126	0.699	1.123
$2,\!18$	2.5103	3.897	1.20790	0.603	1.321
6,4	2.5118	4.433	1.32258	0.686	1.089
$6,\!16$	2.5475	3.892	1.28828	0.639	1.174
$4,\!18$	2.5639	3.816	1.27746	0.605	1.227
$18,\!3$	2.8118	3.927	1.47539	0.594	1.117
1,4	2.8523	4.109	1.15528	0.776	1.218
$6,\!17$	2.8548	3.612	1.22177	0.755	1.272

5,16	2.8769	3.689	1.35044	0.647	1.150
$16,\!5$	2.8956	3.944	1.38494	0.666	1.110
$3,\!18$	2.9136	3.741	1.46554	0.607	1.108
7,4	3.7643	4.005	1.45169	0.596	1.120
3,6	3.7829	3.883	1.15777	0.735	1.496
$4,\!17$	3.8130	3.754	1.34823	0.744	1.059
4,7	3.8181	4.142	1.42450	0.661	1.086
$6,\!15$	3.8303	4.893	1.34936	0.763	1.037
$17,\!4$	3.8466	3.603	1.33520	0.739	1.057
$17,\!3$	4.2531	5.169	1.22042	0.685	1.127
$14,\! 6$	4.2546	4.433	1.19974	0.681	1.111
3,17	4.2870	4.606	1.23308	0.709	1.110
$6,\!14$	4.3470	4.019	1.17460	0.717	1.094
7,3	4.8975	4.142	1.24263	0.587	1.267
5,9	4.9304	4.056	1.09748	0.706	1.250
4,8	4.9413	4.620	1.42756	0.642	1.109
3,7	4.9430	4.189	1.24592	0.623	1.184
8,4	4.9685	4.009	1.36211	0.641	1.104
$16,\!3$	5.0892	3.709	1.48300	0.595	1.101
$5,\!14$	5.1365	3.935	1.27757	0.688	1.197
3,16	5.1567	4.192	1.45411	0.655	1.077
$4,\!15$	5.7601	4.238	1.55547	0.648	1.062
$15,\!4$	5.7860	4.073	1.55646	0.617	1.065
3,8	6.2054	4.647	1.52827	0.645	1.056
9,4	6.2200	5.365	1.47865	0.624	1.057
4,9	6.2292	4.676	1.50019	0.632	1.054
8,3	6.2374	5.508	1.48929	0.655	1.064
6,12	6.4928	5.093	1.31442	0.645	1.108
$12,\! 6$	6.5138	4.258	1.29743	0.685	1.095
9,3	7.3444	4.342	1.21424	0.688	1.112
$4,\!10$	7.3862	5.878	1.46462	0.598	1.146
3,9	7.3882	4.229	1.33999	0.669	1.082
$14,\!3$	7.4787	4.400	1.44896	0.646	1.068
$3,\!14$	7.5235	4.377	1.47762	0.642	1.051
4,13	7.9999	6.155	1.58664	0.578	1.112
$11,\!4$	8.6428	4.985	1.60767	0.592	1.089

$4,\!11$	8.6925	5.676	1.58020	0.569	1.103
4,12	8.8309	5.678	1.47709	0.602	1.149
$12,\!4$	8.8686	4.604	1.29302	0.648	1.114
3,11	9.8024	5.028	1.44810	0.622	1.103
3,12	9.9095	4.866	1.51159	0.631	1.070

Figure S3: Density of unpaired electrons for the singlet ground-state of BN-tetracene molecules. The number of effectively unpaired electrons, N_U , is given in parentheses.