Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors

Baofang Cai^a, Huan Yin^a, Tingting Huo^a, Jun Ma^b, Zengfeng Di^b, Ming Li^b, Nantao Hu^a, Zhi Yang^a, Yafei Zhang^a and Yanjie Su *^a

^aKey Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. ^bState Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

- Height
 200.0 nm
- 1. AFM image of (6, 5) SWCNT network on Ge substrate.

Fig. S1. AFM image of (6, 5) SWCNT network on Ge substrate.

*Corresponding author. Tel.: +86-21-3420 5665, Fax: +86-21-3420 5665

E-mail address: yanjiesu@sjtu.edu.cn (Yanjie Su)

2. Raman spectra of (6, 5) SWCNTs wrapped by poly (9, 9-dioctyfluorene-2,7-diyl)(PFO) and pristine (6, 5) SWCNTs.

Fig. S2. Raman spectra of (6, 5) SWCNTs wrapped by poly (9,9-dioctyfluorene-2,7-

diyl) (PFO) and pristine (6, 5) SWCNTs.

3. Raman spectra of pure graphene under different RHs.

Fig. S3. Raman spectra of pure graphene under different RHs (30 % and 35 %).

 Raman spectra of (6, 5) SWCNT/graphene vdW junctions that measured at 0% RH (dry air) and 30% RH.

Fig. S4. Raman spectra of (6, 5) SWCNT/graphene vdW junctions under different conditions with 0% RH (dry air) and 30% RH.

This Raman spectroscopic characterization was carried out in a home-made chamber, where the RH value can be controlled by mixing humidity air with dry air.

5. SEM image of (6, 5) SWCNT/graphene vdW junctions in the device.

Fig. S5. (a) Typical SEM images of nanohybrids between electrode and channel, Inset, SEM image of nanohybrids in the channel, the scale bar is 500 nm. (b) A SEM

image of the interface of nanohybrids in the channel.

6. Current-voltage curve of pure SWCNT device.

Fig. S6. Current-voltage curve of pure SWCNT device.

The current-voltage curve shows a good Ohmic contact is formed between gold and (6, 5) SWCNTs.

7. Current-time curve of pure SWCNT device.

Fig. S7. Current-time curve of pure SWCNT device operating at - 0.5V under

30% RH.

The pure SWCNT device also exhibits good on/off-state switching behavior and fast response/recovery time. However, the sensitivity of the pure SWCNT device is 1.6%, which is much lower than that of the device based on the SWCNT/graphene hybrids (650%).