Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Effects of fluorine substitution in quinoidal oligothiophenes for use as organic semiconductors

Keitaro Yamamoto,^a Shin-ichiro Kato,^b Hanna Zajaczkowska,^{c,d} Tomasz Marszalek,^{c,d} Paul W. M. Blom,^d and Yutaka Ie^a

^a The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.

^b Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan

^c Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland

^d Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

Table of Contents

Supplementary Figures	S2-S6
General Information	S 7
Synthesis	\$7-\$9
NMR Spectra	S10-S13
OFET Device Fabrication	S14
Computational Details	S14-S19
References	S19

Supplementary Figures

Fig. S1 Depiction of the NBO orbitals for the optimized structures.

Fig. S3 DSC curves of (a) FTQ-1, (b) FTQ-2, and (c) FTQ-3 for a heating rate of 10 °C min⁻¹ in a N₂ atmosphere.

Scheme S1. Synthetic route for TQ-3.

Fig. S4 (a) ¹H NMR spectra of **TQ-3** and (b) ¹⁹F NMR spectra of **FTQ-3** in the aromatic regions in CDCl₃. Signals marked by an asterisk are satellite peaks from CHCl₃.

Fig. S5 (a) Depiction of NBO orbitals and (b) the estimated E_{CT} values for FTQ-2 on the geometry of the singlecrystal structure.

Fig. S6 UV-vis-NIR absorption spectra of thin films of FTQ-1 (green), TQ-1 (light green), FTQ-2 (blue), TQ-2 (light blue), FTQ-3 (red), and TQ-3 (light red).

Fig. S7 CVs of TQ-1 (light green), TQ-2 (light blue), and TQ-3 (light red) in CH₂Cl₂ containing 0.1 M TBAPF₆.

Fig. S8 AFM height image and XRD data for TQ-2.

Fig. S9 Time-dependent electron mobilities under air-exposed conditions for FTQ-2 (blue) and FTQ-3 (red).

Fig. S10 UV-vis-NIR absorption spectra of FTQ-2/TIPSP blend (red, solid line), TQ-2/TIPSP blend (blue, solid line), FTQ-2 (red, dashed line), TQ-2 (blue, dashed line), and TIPSP (black, solid line) in thin films.

Fig. S11 UV-vis-NIR absorption spectra of BTQ-F/TIPSP (purple, solid line), BTQ/TIPSP (orange, solid line), BTQ-F (purple, dashed line), BTQ (orange, dashed line), and TIPSP (black, solid line) in thin films.

Fig. S12 (a) Meridional integration for **TQ-2** and **FTQ-2** obtained from GIWAXS patterns of spin-coated thin films; (b) azimuthal integration intensity containing (100) reflection for **TQ-2** and **FTQ-2**.

General Information

Column chromatography was performed on silica gel. KANTO Chemical silica gel 60N (40-50 µm). Thin-layer Chromatography (TLC) plates were visualized with UV light. Preparative gel-permeation chromatography (GPC) was performed on a Japan Analytical LC-918 equipped with JAI-GEL 1H/2H. ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-ECS400 or JEOL JNM-ECA600 spectrometer in CDCl₃ with tetramethylsilane (TMS) as an internal standard. ¹⁹F NMR spectra were recorded on a JEOL JNM-ECA600 spectrometer in CDCl₃. Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constant (Hz), and integration. Mass spectra were obtained on a Shimadzu AXIMA-TOF. UV-vis spectra were recorded on a Shimadzu UV-3600 spectrophotometer. All spectra were obtained in spectrograde solvents. Cyclic voltammetry was carried out on a BAS CV-620C voltammetric analyzer using a platinum disk as the working electrode, platinum wire as the counter electrode, and Ag/AgNO₃ as the reference electrode at a scan rate of 100 mV s⁻¹. High-resolution mass spectrum (HRMS) was obtained atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI) methods using a Thermo scientific LTQ Orbitrap XL.Elemental analyses were performed on PerkinElmer LS-50B by the elemental analysis section of the Comprehensive Analysis Center (CAC) of ISIR, Osaka University. The surface structures of the deposited organic films were observed by atomic force microscopy (Shimadzu, SPM9600), and the film crystallinity was evaluated by an X-ray diffractometer (Rigaku, SmartLab). X-ray diffraction patterns were obtained using Bragg-Brentano geometry with CuK α radiation as an X-ray source with an acceleration voltage of 45 kV and a beam current of 200 mA. The scanning mode was set to $2\theta - \theta$ scans between $2^{\circ} - 30^{\circ}$ with scanning steps of 0.01°.

Materials

Unless stated otherwise, all reagents were purchased from commercial sources and used without purification. Compounds 1, 3, 2,5-dibromo-3,4-dihexylthiophene and 2,5-dibromo-3,6-dihexylthion[3,2-*b*]thiophene were prepared by the reference procedures.¹⁻⁴

Synthesis of 2: NBS (226 mg, 1.27 mmol) was added to a solution of 1 (220 mg, 0.575 mmol) in AcOH (4.0 mL) at ambient temperature. The reaction was allowed to warm to 80 °C. After stirring for 4 h, the reaction mixture was poured into water. The resulting mixture was extracted with Et₂O. The organic layer was washed with 1 M aq. NaOH, water and dried over MgSO₄. The solvent was removed under reduced pressure, followed by purification with preparative GPC (CHCl₃) to give 2 (180 mg, 79%) as a white solid. ¹⁹F NMR (565 MHz, CDCl₃): δ –133.3, – 130.9; ¹³C NMR (150 MHz, CDCl₃, TMS): δ 92.2-92.4 (m), 111.1-111.3 (m), 141.1 (dd, *J* = 270.2 and 20.2 Hz), 144.3 (dd, *J* = 263.0 and 20.2 Hz).

Synthesis of **FTQ-1**: Sodium hydride (60% in oil) (84 mg, 2.11 mmol) was added to a suspension of malononitrile (69 mg, 1.05 mmol) in anhydrous THF (12.5 mL) under nitrogen atmosphere and stirred for 10 min at room temperature. To this mixture was added compound **2** (174 mg, 0.439 mmol) and Pd(PPh₃)₄ (51 mg, 0.044 mmol), which was then heated to reflux. After 12 h, the reaction was cooled to 0 °C, and diluted hydrochloric acid (1M, 7.8 mL), CHCl₃ (7.8 mL), and DDQ (150 mg, 0.659 mmol) were added and stirred at 0 °C for 5 min. The resulting mixture was extracted with CHCl₃, washed with water, and dried over MgSO₄. The solvent was removed under reduced pressure and purified by column chromatography on silica gel (CHCl₃) to give **FTQ-1** (89 mg, 56%) as a red solid. ¹⁹F NMR (565 MHz, CDCl₃): δ –127.5, –118.7; HRMS (APCI) *m/z*: [M]⁻ calcd. for C₁₄F₄N₄S₂, 363.9501; found, 363.9503.

Synthesis of 4a: 2,5-Dibromo-3,4-dihexylthiophene (119 mg, 0.290 mmol), **3** (307 mg, 0.638 mmol), Pd(PPh₃)₄ (34 mg, 0.029 mmol), and toluene (3.5 mL) were placed in a microwave proof walled glass vial equipped with a snap cap. The glass vial was purged nitrogen, securely sealed, and heated in a microwave reactor with keeping a temperature at 180 °C for 10 min. The reaction mixture was passed through pad of celite and the solvent was removed under reduced pressure, followed by purification with preparative GPC (CHCl₃) to give 4a (138 mg, 75%) as a pale yellow solid. ¹H NMR (600 MHz, CDCl₃, TMS): δ 0.36 (s, 18H), 0.88 (t, *J* = 6.9 Hz, 6H), 1.25-1.38 (m, 12H), 1.47-1.52 (m, 4H), 2.62 (t, *J* = 8.3 Hz, 4H); ¹⁹F NMR (565 MHz, CDCl₃): δ -134.1, -127.1; ¹³C NMR (150 MHz, CDCl₃, TMS): δ -0.8, 14.1, 22.5, 28.1, 29.4, 30.4, 31.4, 114.6 (d, *J* = 24.6 Hz), 118.5 (d, *J* = 11.6 Hz), 126.6, 142.2, 142.4 (dd, *J* = 267.3 and 24.6 Hz), 149.6 (dd, *J* = 257.2 and 18.8 Hz); HRMS (APCI) *m/z*: [M+H]⁺ calcd. for C₃₀H₄₄F₄S₃Si₂, 633.2153; found, 633.2145.

Synthesis of 5a: NBS (85 mg, 0.475 mmol) was added to a solution of 4a (137 mg, 0.216 mmol) in DMF (5.0 mL) at 0 °C. The reaction was allowed to warm to ambient temperature. After stirring for 4 h, the reaction mixture was poured into water. The resulting mixture was extracted with EtOAc. The organic layer was washed with water,

brine and dried over MgSO₄. The solvent was removed under reduced pressure, followed by purification with preparative GPC (CHCl₃) to give **5a** (134 mg, 96%) as a pale yellow solid. ¹H NMR (600 MHz, CDCl₃, TMS): δ 0.89 (t, J = 6.2 Hz, 6H), 1.25-1.38 (m, 12H), 1.44-1.50 (m, 4H), 2.58 (t, J = 8.3 Hz, 4H); ¹⁹F NMR (565 MHz, CDCl₃): δ –132.3, –130.9; ¹³C NMR (150 MHz, CDCl₃, TMS): δ 14.0, 22.5, 28.1, 29.5, 30.4, 31.4, 91.3-91.5 (m), 113.7 (d, J = 11.6 Hz), 125.4, 141.1 (dd, J = 265.7 and 18.6 Hz), 143.3, 144.3 (dd, J = 262.8 and 20.1 Hz); HRMS (APCI) m/z: [M]⁺ calcd. for C₂₄H₂₆Br₂F₄S₃, 645.9479; found, 645.9468.

Synthesis of **FTQ-2**: Sodium hydride (60% in oil) (40 mg, 0.94 mmol) was added to a suspension of malononitrile (33 mg, 0.50 mmol) in anhydrous 1,4-dioxane (5.9 mL) under nitrogen atmosphere and stirred for 10 min at room temperature. To this mixture was added compound **5a** (134 mg, 0.207 mmol) and Pd(PPh₃)₄ (24 mg, 0.021 mmol), which was then heated to reflux. After 12 h, the reaction was cooled to 0 °C, and diluted hydrochloric acid (1M, 6.0 mL), CHCl₃ (6.0 mL) and DDQ (71 mg, 0.31 mmol) were added and stirred at 0 °C for 5 min. The resulting mixture was extracted with CHCl₃, washed with water, and dried over MgSO₄. The solvent was removed under reduced pressure and purified by column chromatography on silica gel (hexane/CH₂Cl₂, 1:2) to give **FTQ-2** (62 mg, 49%) as a blue solid. ¹H NMR (400 MHz, CDCl₃, TMS): δ 0.93 (t, *J* = 6.9 Hz, 6H), 1.30-1.42 (m, 8H), 1.48-1.62 (m, 8H), 2.78-2.84 (m, 4H); ¹⁹F NMR (565 MHz, CDCl₃): δ –133.3, –112.6; HRMS (APCI) *m/z*: [M]⁻ calcd. for C₃₀H₂₆F₄N₄S₃, 614.1256; found, 614.1224.

Synthesis of 4b: 2,5-Dibromo-3,6-dihexylthieno[3,2-b]thiophene (152 mg, 0.326 mmol), **3** (345 mg, 0.717 mmol), Pd(PPh₃)₄ (38 mg, 0.033 mmol), and toluene (5.0 mL) were placed in a microwave proof walled glass vial equipped with a snap cap. The glass vial was purged nitrogen, securely sealed, and heated in a microwave reactor with keeping a temperature at 180 °C for 10 min. The reaction mixture was passed through pad of celite and the solvent was removed under reduced pressure, followed by purification with preparative GPC (CHCl₃) to give 4b (200 mg, 89%) as a yellow solid. ¹H NMR (600 MHz, CDCl₃, TMS): δ 0.37 (s, 18H), 0.87 (t, *J* = 6.2 Hz, 6H), 1.25-1.40 (m, 12H), 1.71-1.76 (m, 4H), 2.79 (t, *J* = 8.3 Hz, 4H); ¹⁹F NMR (565 MHz, CDCl₃): δ –134.1, –126.8; ¹³C NMR (150 MHz, CDCl₃, TMS): δ –0.7, 14.2, 22.7, 28.9, 29.0, 29.4, 31.6, 115.3 (d, *J* = 24.6 Hz), 119.1 (d, *J* = 11.6 Hz), 126.4, 134.5, 139.9, 142.6 (dd, *J* = 267.3 and 24.6 Hz), 149.8 (dd, *J* = 258.7 and 18.8 Hz); HRMS (APCI) *m/z*: [M+H]⁺ calcd. for C₃₂H₄₄F₄S₄Si₂, 689.1874; found, 689.1864.

Synthesis of **5b**: NBS (114 mg, 0.638 mmol) was added to a solution of **4b** (200 mg, 0.290 mmol) in DMF (13.6 mL) at 0 °C. The reaction was allowed to warm to ambient temperature. After stirring for 14 h, the reaction mixture was poured into water. The resulting mixture was extracted with EtOAc. The organic layer was washed with water, brine and dried over MgSO₄. The solvent was removed under reduced pressure, followed by purification with preparative GPC (CHCl₃) to give **5b** (165 mg, 81%) as a pale yellow solid. ¹H NMR (600 MHz, CDCl₃, TMS): δ 0.88 (t, *J* = 6.2 Hz, 6H), 1.25-1.40 (m, 12H), 1.68-1.73 (m, 4H), 2.75 (t, *J* = 8.3 Hz, 4H); ¹⁹F NMR (565 MHz, CDCl₃): δ -132.1, -131.2; ¹³C NMR (150 MHz, CDCl₃, TMS): δ 14.1, 22.6, 28.7, 28.8, 29.3, 31.5, 91.6-91.8 (m), 114.4 (d, *J* = 11.6 Hz), 124.8, 135.5, 139.9, 141.1 (dd, *J* = 265.8 and 20.1 Hz), 144.4 (dd, *J* = 261.5 and 20.3 Hz); HRMS (APCI) *m/z*: [M]⁺ calcd. for C₂₆H₂₆Br₂F₄S₄, 701.9200; found, 701.9193.

Synthesis of **FTQ-3**: Sodium hydride (60% in oil) (23 mg, 0.57 mmol) was added to a suspension of malononitrile (19 mg, 0.28 mmol) in anhydrous 1,4-dioxane (3.5 mL) under nitrogen atmosphere and stirred for 10 min at room temperature. To this mixture was added compound **5b** (83 mg, 0.12 mmol) and Pd(PPh₃)₄ (14 mg, 0.012 mmol), which was then heated to reflux. After 18 h, the reaction was cooled to 0 °C, and diluted hydrochloric acid (1M, 3.6 mL), CHCl₃ (3.6 mL) and DDQ (40 mg, 0.18 mmol) were added and stirred at 0 °C for 10 min. The resulting mixture was extracted with CHCl₃, washed with water, and dried over MgSO₄. The solvent was removed under reduced pressure and purified by column chromatography on silica gel (hexane/CH₂Cl₂, 1:2) to give **FTQ-3** (50 mg, 63%) as a blue solid. ¹H NMR (400 MHz, CDCl₃, TMS): δ 0.92 (t, *J* = 6.9 Hz, 6H), 1.32-1.52 (m, 12H), 1.70-1.78 (m, 4H), 2.89 (t, *J* = 7.8 Hz, 4H); ¹⁹F NMR (565 MHz, CDCl₃): δ –127.5, –118.7; HRMS (APCI) *m/z*: [M]⁻ calcd. for C₃₂H₂₆F₄N₄S₄, 670.0976; found, 670.0941.

Synthesis of **S1**: 2-(Tributylstannyl)thiophene (230 mg, 0.616 mmol), 2,5-dibromo-3,6-dihexylthieno[3,2b]thiophene (130 mg, 0.279 mmol), Pd(PPh₃)₄ (32 mg, 0.028 mmol), and toluene (4.3 mL) were placed in a microwave proof walled glass vial equipped with a snap cap. The glass vial was purged nitrogen, securely sealed, and heated in a microwave reactor with keeping a temperature at 180 °C for 10 min. The reaction mixture was passed through pad of celite and the solvent was removed under reduced pressure, followed by purification with preparative GPC (CHCl₃) to give **S1** (200 mg, 89%) as a brown solid. ¹H NMR (400 MHz, CDCl₃, TMS): δ 0.88 (t, *J* = 6.9 Hz, 6H), 1.25-1.45 (m, 12H), 1.71-1.80 (m, 4H), 2.87 (t, *J* = 8.2 Hz, 4H), 7.09 (dd, *J* = 5.0, and 3.7 Hz, 2H), 7.17 (dd, J = 3.7 and 0.9 Hz, 2H), 7.35 (dd, J = 5.0 and 0.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 14.1, 22.6, 28.8, 29.1, 29.4, 31.6, 125.7, 126.2, 127.5, 131.3, 132.0, 136.6, 138.5; HRMS (APCI) *m/z*: [M+H]⁺ calcd. for C₂₆H₃₂S₄, 473.1460; found, 473.1446.

Synthesis of **S2**: NBS (166 mg, 0.930 mmol) was added to a solution of **S1** (220 mg, 0.465 mmol) in DMF (24 mL) and THF (6 mL) at 0 °C. The reaction was allowed to warm to ambient temperature. After stirring for 10 h, the reaction mixture was poured into water. The resulting mixture was extracted with EtOAc. The organic layer was washed with water, brine and dried over MgSO₄. The solvent was removed under reduced pressure, followed by purification with preparative GPC (CHCl₃) to give **S2** (250 mg, 85%) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃, TMS): δ 0.88 (t, *J* = 6.9 Hz, 6H), 1.22-1.45 (m, 12H), 1.65-1.80 (m, 4H), 2.82 (t, *J* = 8.2 Hz, 4H), 6.90 (d, *J* = 3.7 Hz, 2H), 7.04 (d, *J* = 3.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 14.1, 22.6, 28.7, 29.1, 29.3, 31.6, 126.5, 130.3, 130.7, 132.5, 137.9, 138.6; HRMS (APCI) *m*/*z*: [M+H]⁺ calcd. for C₂₆H₃₀Br₂S₄, 630.9650; found, 630.9644.

Synthesis of **TQ-3**: Sodium hydride (60% in oil) (43 mg, 1.07 mmol) was added to a suspension of malononitrile (35 mg, 0.53 mmol) in anhydrous THF (6.4 mL) under nitrogen atmosphere and stirred for 10 min at room temperature. To this mixture was added compound **S2** (140 mg, 0.222 mmol) and Pd(PPh₃)₄ (26 mg, 0.022 mmol), which was then heated to reflux. After 12 h, the reaction was cooled to 0 °C, and diluted hydrochloric acid (1M, 6.0 mL), CHCl₃ (6.0 mL) and DDQ (76 mg, 0.33 mmol) were added and stirred at 0 °C for 10 min. The resulting mixture was extracted with CHCl₃, washed with water, and dried over MgSO₄. The solvent was removed under reduced pressure and purified by column chromatography on silica gel (hexane/CHCl₃, 1:10) to give **TQ-3** (50 mg, 38%) as a blue solid. ¹H NMR (600 MHz, CDCl₃, TMS): δ 0.92 (t, *J* = 7.3 Hz, 6H), 1.32-1.52 (m, 12H), 1.70-1.78 (m, 4H), 2.86 (t, *J* = 8.2 Hz, 4H), 7.31 (d, *J* = 5.5 Hz, 2H), 7.56 (d, *J* = 5.5 Hz, 2H); HRMS (APCI) *m/z*: [M+H]⁺ calcd. for C₃₂H₃₀N₄S₄, 599.1426; found, 599.1422.

NMR Spectra

¹⁹F NMR (565 MHz) spectrum of FTQ-1 in CDCl₃.

¹H NMR (400 MHz) and ¹⁹F NMR (565 MHz) spectra of FTQ-2 in CDCl₃.

¹H NMR (400 MHz) and ¹⁹F NMR (565 MHz) spectra of FTQ-3 in CDCl₃.

¹H NMR (600 MHz) spectrum of **TQ-3** in CDCl₃.

OFET Device Fabrication

The field-effect electron mobility was measured using bottom-gate bottom-contact OFET devices. The p-doped silicon substrate functions as the gate electrode. A thermally grown silicon oxide (SiO₂) dielectric layer on the gate substrate has 300 nm thick and a capacitance of 10.0 nF cm⁻². Interdigital source and drain electrodes were constructed with gold (30 nm) that were formed on the SiO₂ layer. The channel width (*W*) and channel length (*L*) are 38 mm and 5 μ m, respectively. The silicon oxide surface was first washed with toluene, acetone, purified water and 2-propanol. It was then activated by ozone treatment and pretreated with HMDS. The semiconducting layer was fabricated by spin coating from 0.3 wt% chloroform solution at 1000 rpm for 1 min onto the substrate in air for **FTQ-2** and **FTQ-3**, followed by annealing for 90 min at various temperatures under a vacuum condition (10⁻³Pa). The characteristics of the OFETs were measured at room temperature under a pressure of 10⁻³-Pa by using a KEITHLEY 4200 semiconductor parameter analyzer. The μ e was calculated in the saturated region by the following equation.

$$I_{\rm DS} = \frac{W}{2L} C_i \mu (V_{GS} - V_{th})^2$$

Current on/off ratio was determined from the ID sat VGS= 0 V (Ioff) and VGS= 80 V (Ion).

Computational Details

All calculations were conducted using Gaussian 09 program. The geometry was optimized with the restricted Becke Hybrid (B3LYP) at 6-31 G(d,p) level.

TD-DFT Calculation

FTQ-1

Excited State 1: Singlet-A 2.61 eV 474 nm $f = 1.58 < S^{**2} = 0.000$ HOMO > LUMO 0.70776 HOMO < LUMO 0.11597

FTQ-2(Me)

Excited State 1: Singlet-A 2.12 eV 586 nm $f = 2.14 < S^{**2} = 0.000$ HOMO > LUMO 0.70816 HOMO < LUMO 0.12439

FTQ-3(Me)

Excited State 1: Singlet-A 1.96 eV 632 nm $f = 2.63 < S^{**2} = 0.000$ HOMO > LUMO 0.70965 HOMO < LUMO 0.13242

TQ-1

Excited State 1: Singlet-A 2.57 eV 483 nm $f = 1.37 < S^{**2} = 0.000$ HOMO > LUMO 0.70399 HOMO < LUMO 0.10769

TQ-2(Me)

Excited State 1: Singlet-A 2.11 eV 589 nm $f = 1.98 < S^{**2} = 0.000$ HOMO > LUMO 0.70613 HOMO < LUMO 0.11819

TQ-3(Me)

Excited State 1: Singlet-A 1.96 eV 634 nm $f = 2.51 < S^{**2} = 0.000$ HOMO-1> LUMO+1 0.10533 HOMO > LUMO 0.70790 HOMO < LUMO 0.12771

Center	Atomic	A	tomic	Coordinates	s (Angstroms)	
Number	Numb	er	Туре	X Y	Z	
	6		2 602110	1 225270	0.000001	
1	6	0	-1.330513	-1.333370	0.000001	
2	16	0	1 007040	1 175286	0.000000	
3 1	6	0	-1.90/940	0.005828	0.000008	
+ 5	6	0	-3.223420	-0.003828	0.000002	
5	6	0	4.552791	0.112527	-0.000003	
0	6	0	0.677226	0.112529	0.000010	
8	16	0	1 007040	1 175288	0.000010	
0	6	0	3 225/20	-1.175288	0.000008	
10	6	0	2 603118	1 335360	0.000003	
10	6	0	2.093110	1.333309	0.000002	
11	0	0	2 466054	2 412100	0.000007	
12	9	0	0.625012	2.412100	-0.000002	
13	9	0	2 466055	2.319301	0.000008	
14	9	0	-3.400033	-2.412099	-0.000003	
15	9	0	-0.053912	-2.319301	0.000008	
10	0	0	-4.332/90	0.570938	-0.000004	
1/	07	0	-5.025500	-0.3/1314	-0.000002	
10	6	0	-0.320330	-1.303824	-0.000033	
19 20	07	0	-4.0900//	2 802001	-0.000003	
20	6	0	-3.143427	2.893091	-0.000001	
21	07	0	5.025507	0.3/1313	0.000000	
22	1	0	0.320330	1.303823	-0.000030	
23	07	0	4.898878	-1./34389	-0.000003	
24	/	0	5.145429	-2.893091	0.000001	
Optimize	d structu	re of	FTQ-2(Me)	at B3LYP/6-	-31G(d, p).	
Contor	Atomio		tamia	Coordinator	(Anastroma)	
Number	Numb	A or	Tumo	v v	s (Angsuons)	
Nulliber	Inullio		Туре	Λ I	<i>L</i>	
1	6	0	0.691723	1.757533	0.000062	
2	6	0	-0.691789	1.757483	-0.000119	
3	6	0	1.269400	0.433182	0.000134	
4	16	0	0.000049	-0.797950	-0.000030	
5	6	0	-1.269380	0.433101	-0.000184	
6	6	0	-2.603835	0.057060	-0.000132	
7	6	0	-5.168771	-0.157087	-0.000008	
8	16	0	-4.003670	1.169089	0.000485	
9	6	0	-3.112704	-1.276716	-0.000601	
10	6	0	-4.474326	-1.400047	-0.000564	
11	6	0	5.168793	-0.157073	0.000030	
12	6	0	2.603862	0.057157	0.000098	

4.003735 1.169140 -0.000481

 $4.474308 \quad -1.400010 \quad 0.000560$

3.112690 -1.276632 0.000568

-6.535994 0.064020 0.000205

6.536024 0.063989 -0.000148

1.547197 2.993854 0.000060

-1.547378 2.993724 -0.000127

5.099581 -2.572273 0.001027

2.308119 -2.340064 0.001055

-2.308177 -2.340182 -0.001118

Optimized structure of **FTQ-1** at B3LYP/6-31G(d, p).

23	9	0	-5.099640	-2.572289	-0.001028
24	6	0	-7.035427	1.398124	0.000790
25	7	0	-7.402393	2.504472	0.001272
26	6	0	-7.486686	-0.996848	-0.000135
27	7	0	-8.295150	-1.835352	-0.000374
28	6	0	7.035500	1.398077	-0.000713
29	7	0	7.402500	2.504414	-0.001184
30	6	0	7.486682	-0.996910	0.000210
31	7	0	8.295119	-1.835439	0.000468
32	1	0	0.949505	3.903968	0.000715
33	1	0	2.192890	3.031905	0.883855
34	1	0	2.191922	3.032493	-0.884429
35	1	0	-0.949774	3.903895	-0.000822
36	1	0	-2.193103	3.031684	-0.883904
37	1	0	-2.192087	3.032323	0.884377

Optimized structure of **FTQ-3(Me)** at B3LYP/6-31G(d, p).

Center	Atomic	A	tomic	Coordinate	es (Angstroms)	
Number	Numb	er	Туре	X Y	Z	
	<i>.</i>		0.154(10		0.000.50	
1	6	0	-0.154613	0.694557	-0.000053	
2	6	0	0.154612	-0.694559	-0.000052	
3	16	0	-1.304338	-1.65438/	-0.000036	
4	6	0	-2.310088	-0.164602	-0.000013	
5	6	0	-1.491993	1.023043	-0.000014	
6	16	0	1.304337	1.654385	-0.000041	
/	6	0	2.310087	0.164600	-0.000016	
8	6	0	1.491993	-1.023045	-0.000015	
9	6	0	-3.693062	-0.26/384	-0.000004	
10	6	0	3.693062	0.26/384	-0.000011	
11	6	0	-4.466956	-1.462655	0.000012	
12	6	0	-5.825597	-1.295339	0.000010	
13	6	0	-6.242055	0.0651/1	-0.000005	
14	16	0	-4.822779	1.115512	2 -0.00002/	
15	6	0	4.466955	1.462655	0.000008	
16	6	0	5.825596	1.295340	0.000010	
l /	6	0	6.242055	-0.0651/0	-0.000004	
18	16	0	4.822/80	-1.115511	-0.000033	
19	6	0	-7.532792	0.571222	0.000009	
20	6	0	7.532793	-0.5/1220	0.000011	
21	6	0	-2.006/59	2.434640	0.000020	
22	6	0	2.006/59	-2.434641	0.000020	
23	9	0	-3.901842	-2.6/1/36	0.000029	
24	9	0	-6.683923	-2.310254	0.000024	
25	9	0	3.901840	2.6/1/36	0.000024	
26	9	0	6.683921	2.31025/	0.000029	
27	6	0	-/./3861/	1.980086	0.000009	
28		0	-/.86224/	3.139322	0.000037	
29	6	0	-8.685147	-0.265478	0.000016	
30	1	0	-9.651736	-0.915663	0.000047	
31	6	0	7.738618	-1.980084	0.000008	
32 22	1	0	/.862252	-3.139320	0.000037	
55	6	0	8.685147	0.265481	0.000024	
34 25	1	0	9.6517/42	0.915659	0.000052	
35	1	0	-2.616966	2.645060	0.884656	
36	1	0	-1.175419	3.143454	0.000095	

-	37	1	0	-2.616878	2.645138	-0.884658	
2	38	1	0	2.616971	-2.645060	0.884652	
2	39	1	0	1.175419	-3.143456	0.000100	
4	40	1	0	2.616872	-2.645141	-0.884662	

Optimized structure of **TQ-1** at B3LYP/6-31G(d, p).

Center	Atomic	A	Atomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z	
1	6	0	2.579781	1.539159	-0.000001	
2	6	0	1.219715	1.500315	-0.000002	
3	16	0	1.971768	-1.029355	-0.000001	
4	6	0	3.195080	0.238572	-0.000001	
5	6	0	-4.551438	0.028047	0.000000	
6	6	0	0.664532	0.175956	-0.000002	
7	6	0	-0.664532	-0.175954	-0.000002	
8	16	0	-1.971767	1.029356	-0.000001	
9	6	0	-3.195080	-0.238573	-0.000001	
10	6	0	-2.579780	-1.539159	-0.000002	
11	6	0	-1.219714	-1.500314	-0.000002	
12	6	0	4.551437	-0.028048	0.000000	
13	6	0	5.493195	1.042445	0.000002	
14	7	0	6.243532	1.933381	0.000007	
15	6	0	5.044497	-1.364181	-0.000001	
16	7	0	5.414465	-2.468954	-0.000001	
17	6	0	-5.493196	-1.042446	0.000001	
18	7	0	-6.243533	-1.933382	0.000009	
19	6	0	-5.044498	1.364180	-0.000001	
20	7	0	-5.414467	2.468953	-0.000001	
21	1	0	3.175761	2.443708	-0.000001	
22	1	0	0.591681	2.384228	-0.000001	
23	1	0	-3.175759	-2.443709	-0.000002	
24	1	0	-0.591679	-2.384226	-0.000003	

Optimized structure of **TQ-2** at B3LYP/6-31G(d, p).

-						
Center Number	Atom Nur	iic At nber	отіс Туре	Coordinate X Y	es (Angstroms) Z	
1	6	0	6.505729	-0.375527	0.000033	
2	6	0	-0.692708	1.466632	0.000078	
3	6	0	0.692491	1.466767	-0.000167	
4	6	0	-1.274003	0.146056	0.000073	
5	16	0	0.000117	-1.080914	-0.000077	
6	6	0	1.274028	0.146272	-0.000178	
7	6	0	2.598819	-0.259257	0.000081	
8	6	0	-2.598770	-0.259519	-0.000158	
9	16	0	-4.014150	0.824757	-0.000057	
10	6	0	-5.128142	-0.536825	-0.000065	
11	6	0	-4.409344	-1.775886	-0.000229	
12	6	0	-3.055114	-1.618984	-0.000283	
13	6	0	5.128196	-0.536755	0.000085	
14	16	0	4.014294	0.824901	0.000073	
15	6	0	3.055087	-1.618747	0.000180	
16	6	0	4.409304	-1.775758	0.000177	
17	6	0	-6.505662	-0.375496	0.000052	

18	6	0	-1.552299	2.699845	0.000224
19	6	0	1.551747	2.700211	-0.000304
20	6	0	-7.358060	-1.516588	0.000030
21	7	0	-8.032415	-2.467043	0.000112
22	6	0	-7.099804	0.917408	0.000191
23	7	0	-7.552939	1.991417	0.000256
24	6	0	7.358046	-1.516680	0.000047
25	7	0	8.032325	-2.467189	0.000070
26	6	0	7.099964	0.917334	-0.000035
27	7	0	7.553166	1.991315	-0.000087
28	1	0	-4.923657	-2.729025	-0.000342
29	1	0	-2.362870	-2.453371	-0.000490
30	1	0	2.362777	-2.453080	0.000329
31	1	0	4.923542	-2.728939	0.000277
32	1	0	-0.957716	3.612254	0.000612
33	1	0	-2.199218	2.733271	-0.882906
34	1	0	-2.199609	2.732816	0.883072
35	1	0	2.199091	2.733340	-0.883117
36	1	0	0.956910	3.612457	-0.000762
37	1	0	2.198588	2.733863	0.882871

Optimized structure of **TQ-3** at B3LYP/6-31G(d, p).

 Center	Atomi	с <u>А</u>	tomic	Coordinate		
Number	Num	ber 1	Type	X Y	Z	
			-) F -			
1	6	0	0.188863	-0.686961	-0.000258	
2	6	0	-0.188863	0.686960	-0.000261	
3	16	0	1.229801	1.706400	-0.000242	
4	6	0	2.303434	0.265134	-0.000156	
5	6	0	1.539958	-0.955486	-0.000186	
6	16	0	-1.229801	-1.706401	-0.000239	
7	6	0	-2.303434	-0.265135	-0.000160	
8	6	0	-1.539958	0.955485	-0.000192	
9	6	0	3.676019	0.460707	-0.000053	
10	6	0	-3.676020	-0.460708	-0.000060	
11	6	0	4.350429	1.722587	0.000091	
12	6	0	5.713793	1.648152	0.000181	
13	6	0	6.213575	0.307401	0.000111	
14	16	0	4.885282	-0.847059	-0.000082	
15	6	0	-4.350430	-1.722588	0.000088	
16	6	0	-5.713794	-1.648151	0.000183	
17	6	0	-6.213576	-0.307401	0.000114	
18	16	0	-4.885281	0.847058	-0.000088	
19	6	0	7.544955	-0.086223	0.000191	
20	6	0	-7.544956	0.086225	0.000202	
21	6	0	2.123261	-2.339842	-0.000134	
22	6	0	-2.123262	2.339841	-0.000150	
23	6	0	7.910027	-1.460883	0.000136	
24	7	0	8.171753	-2.596994	0.000096	
25	6	0	8.578309	0.893301	0.000330	
26	7	0	9.404283	1.715638	0.000428	
27	6	0	-7.910027	1.460885	0.000147	
28	7	0	-8.171748	2.596998	0.000108	
29	6	0	-8.578311	-0.893299	0.000350	
30	7	0	-9.404283	-1.715638	0.000400	
31	1	0	3.808202	2.661454	0.000137	

32	1	0	6.380974	2.501277	0.000300	
33	1	0	-3.808204	-2.661455	0.000131	
34	1	0	-6.380976	-2.501277	0.000305	
35	1	0	2.745213	-2.517368	-0.883759	
36	1	0	2.745197	-2.517307	0.883514	
37	1	0	1.328926	-3.090020	-0.000118	
38	1	0	-2.745196	2.517313	0.883498	
39	1	0	-1.328926	3.090019	-0.000140	
40	1	0	-2.745215	2.517360	-0.883775	

GIWAXS measurements of the films deposited by spin-coating were performed at the DELTA Synchrotron using beamline BL09 with a photon energy of 10 keV. The beam size was 1.0 mm × 0.2 mm (width x height), and samples were irradiated just below the critical angle for total reflection with respect to the incoming X-ray beam ($\sim 0.1^{\circ}$). The scattering intensity was detected on a 2-D image plate (MAR-345) with a pixel size of 150 μ m (2300 × 2300 pixels), and the detector was placed 523 mm from the sample center. All X-ray scattering measurements were performed under vacuum (~1mbar) to reduce air scattering and beam damage to the sample. All 2DWAXS data performed processing and analysis was by using the software package Datasqueeze (http://www.datasqueezesoftware.com).

References

1) Y. Gao, Y. Deng, H. Tian, J. Zhang, D. Yan, Y. Geng, F. Wang, Adv. Mater., 2017, 29, 1606217.

2) Y. Sakamoto, S. Komatsu, T. Suzuki, J. Am. Chem. Soc., 2001, 123, 4643-4644.

3) Y. Li, L. Xue, H. Li, Z. Li, B. Xu, S. Wen, W. Tian, *Macromolecules* 2009, 42, 4491–4499.

4) Y. He, W. Wu, G. Zhao, Y. Liu, Y. Li, *Macromolecules*, 2008, 41, 9760–9766.