Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Solution-processed organic single-crystalline semiconductors with fence-like shape *via* ultrasound concussion

Bowen Zhang,^a Qijing Wang,^{*a} Jianhang Guo,^a Mengjiao Pei,^a Hengyuan Wang,^a Sai Jiang,^a

Eul-Yong Shin,^b Yong-Young Noh,^b Kazuhito Tsukagoshi,^c Yi Shi^a and Yun Li^{*a}

^a National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
^b Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea.
^c International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan

Corresponding Authors

*E-mail: yli@nju.edu.cn; qijingwang@nju.edu.cn

Fig. S1 Optical image of long C₈-BTBT single crystals.

Fig. S2 Optical images of morphological change of C_8 -BTBT crystals using solution without PMMA from 6 to 21 min.

Fig. S3 Optical image of C₈-BTBT single crystals *via* SVA. C₈-BTBT and PMMA were mixed with the weight ratio of 1:1 and dissolved in anisole (1 wt %) and spin-coated onto SiO₂/Si substrates. Then the samples were stuck on the top side down to the Petri dish cover over the bottom dish half-filled by the chlorobenzene. After 12 hours, the C₈-BTBT crystals were formed on the substrates. The length of these crystals is mostly around 100 μ m.

Fig. S4 Optical images of morphological change of C₈-BTBT crystals from 6 to 30 min.

Fig. S5 Optical image of C_8 -BTBT crystals formed without ultrasound.

Fig. S6 Optical image of C_8 -BTBT crystals formed with weaker ultrasound.

Fig. S7 (a) and (b) Polarized optical microscopy images of C_8 -BTBT crystals.

Fig. S8 (a) Transfer characteristics of a device with the highest mobility ($\mu_{FET} = 6.0 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$) operated at -20 V drain voltage under vacuum. The effective channel length is L = 485 µm and the channel width is W = 25 µm. Insert is optical image of device fabricated for G-GFP. (b) Output characteristics at gate voltages of -15, -20, -25, and -30 V of the C₈-BTBT crystal-based transistor.

Fig. S9 Contact resistance calculated using GFP technique.