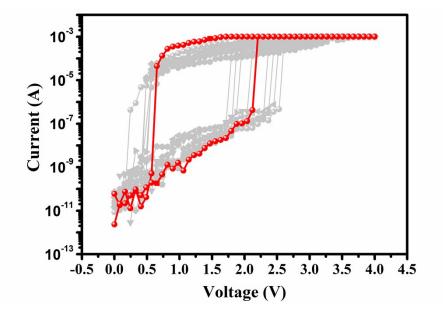
## Supplementary Information

## Breakthrough in High On-State Current Based on Ag-GeTe<sub>8</sub> Selectors

Sifan Zhang,<sup>ac</sup> Liangcai Wu, \*ab Zhitang Song, \*a Tao Li,<sup>ac</sup> Xin Chen,<sup>a</sup> and Shuai Yan,<sup>ac</sup> Min Zhu<sup>a</sup>

<sup>a</sup> State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-

system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.


<sup>b</sup> College of Science, Donghua University, Shanghai 201620, China.

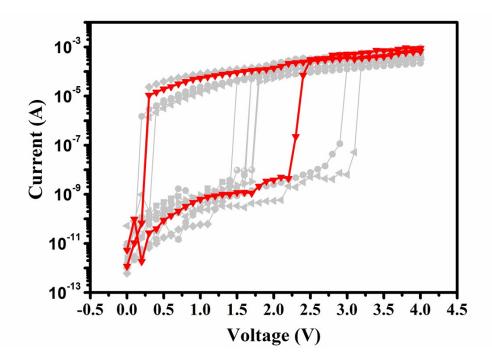
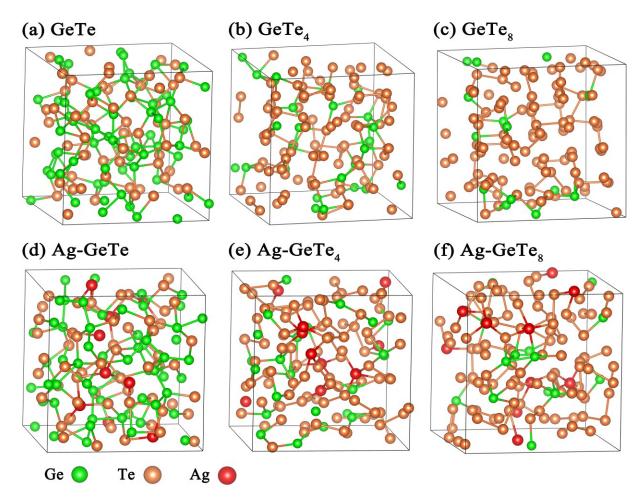
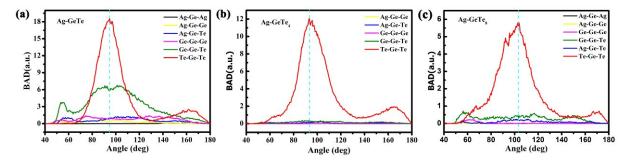
<sup>c</sup> University of the Chinese Academy of Sciences, Beijing 100049, China.

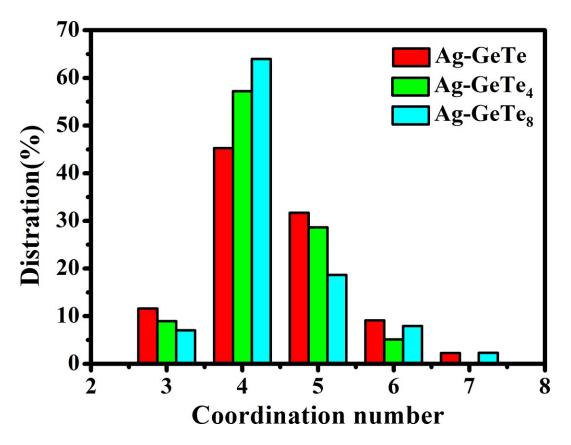
## **Corresponding Author**

Prof. Liangcai Wu, E-mail: lcwu@dhu.edu.cn.

Prof. Zhitang Song, E-mail: ztsong@mail.sim.ac.cn





Fig. S2 The I-V curves of Al/TiN/GeTe $_8$ /TiN/W device.



**Fig. S3** (a)-(c) The amorphous structure of  $GeTe_x(x=1, 4, 8)$  at 300 K. (d)-(f) The amorphous structure of Ag-GeTe<sub>x</sub>(x=1, 4, 8) at 300 K.



**Fig. S4** Details of the bond angle distributions around Ge in a) Ag-GeTe. b) Ag-GeTe<sub>4</sub>. c) Ag-GeTe<sub>8</sub>. The bond angle distribution around Ge is almost derived from the contribution of the bond angle distribution of Te-Ge-Te.



**Fig. S5** Coordination number distributions of Ge in Ag-GeTe, Ag-GeTe<sub>4</sub> and Ag-GeTe<sub>8</sub>. As the Te concentration increases, the proposion of four coordination number of Ge atoms increased from 45.3% to 57.2%, then to 64.0%, the five coordination number of Ge atoms decreased from 31.7% to 28.6%, then to 18.7%, and the six coordination number of Ge atoms decreased from 9.1% to 5.1%, then rose to 7.9%.