Supporting Information

Tungsten Oxysulphide Nanosheets for Highly Sensitive and Selective NH₃ Sensing

Yanan Zheng, ^{*a*,§} Lan Sun, ^{*a*,§} Weiwei Liu, ^{*a*} Chen Wang, ^{*a*} Zhengfei Dai, ^{*a*,*b*,*} and Fei Ma^{*a*,*}

^a State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China.

*Corresponding author: mafei@mail.xjtu.edu.cn (F. M.); sensdai@mail.xjtu.edu.cn (Z.D.).

^b State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China.

[§] These authors contributed equally in this work.

S1. The density functional theory (DFT) calculations

The density functional theory (DFT) calculations were carried in the lattice structures of WS₂, tungsten oxysulphide and WO₃ to make sure the stable configurations of ammonia molecule absorption. For pure WS₂, we considered three absorption sites (Figure S5a-c), namely, on top of a W atom (T_{W1}), on top of a S atom (T_{S1}), on a hollow site (T_{h1}). ^{S1} By comparing the total energy (E_{total}) of the involved sites in Table S3, we choose the stable site T_h with the lowest E_{total} . As for tungsten oxysulphide, in the same way, we choose five absorption sites (Figure S6a-e), on a hollow site (T_{h2}), on top of a O atom with N atom absorbing (T_{O-N}), on top of a S atom (T_{S2}), on top of a W atom (T_{W2}) and on top of a O atom with H atom absorbing (T_{O-H}). The T_{O-H} site of configuration owned the lowest E_{total} (Table S4). For pure WO₃, two sites were considered, on top of a W atom with N atom absorbing (T_{W-N}), on top of a W atom with H atom absorbing (T_{W-H}). ^{S2} In the process of calculating E_{total} of two sites, T_{W-H} site of configuration is unstable, switching to T_{W-N} , so the E_{total} of T_{W-N} configuration is - 312.689 eV (Table S5).

Figure S1. (a) XRD pattern obtained from WS-2 and WS-5 using the different ratios of WCl₆ and TAA (1:2, 1:5). (b, c) Typical SEM image obtained from thin films: (b) hexagonal WO₃ nanosheets, (c) monoclinic WO₃ nanorods.

Figure S2. (a) SAED pattern of WS-10. (b) SAED pattern of WS-15. (c) SAED pattern of WS-20.

Figure S3. The dynamic sensing signals on exposure to 0.01, 0.02 and 0.04 ppm NH_3 for WS-15 at 125 °C.

Figure S4. The sensing response of the WS-15 sample toward 50 ppm NH₃ at 125 °C for 3 weeks.

Figure S5. Different sites of WS_2 configuration. (a) On top of a W atom (T_{W1}). (b) On top of a S atom (T_{S1}). (c) On a hollow site (T_{h1}).

Figure S6. Different sites of tungsten oxysulphide configuration. (a) On a hollow site (T_{h2}) . (b) On top of an O atom with N atom absorbing (T_{O-N}) . (c) On top of a S atom (T_{S2}) . (d) On top of a W atom (T_{W2}) . (e) On top of an O atom with H atom absorbing (T_{O-H}) .

Figure S7. Different sites of WO₃ configuration. (a) On top of a W atom with N atom absorbing (T_{W-N}). (b) On top of a W atom with H atom absorbing (T_{W-H}).

Figure S8. The XRD patterns of WS-13 and WS-17 (a), SEM images of (b) WS-13 and (c) WS-17.

Figure S9. XPS spectra of WS-13, WS-15 and WS-17: (a) W 4f, (b) S2p, (c) O1s, and (d) The sensing responses of WS-13, WS-15 and WS-17 to 100 ppm NH₃ at 125 °C.

As shown in the Figure S8, both the WS-13 and WS-17 samples are featured with the similar phase and nanosheet morphology as the WS-15 materials. The corresponding XPS spectra are presented in t Figure S9a-c, wherein their O/(S+O) molar ratios were calculated as 17.8% (WS-13), 10.9% (WS-15), and 13.7% (WS-15). Figure S9d further compares the sensing properties of WS-13, WS-15 and WS-17 samples to 100 ppm NH_3 at 125 °C.

W S-20.				
Material	$W 4f_{7/2} (eV)$	$W 4f_{5/2}(eV)$	S 2p _{3/2} (eV)	S 2p _{1/2} (eV)
WS-10	33.23	35.38	162.87	164.06
WS-15	32.12	34.25	161.79	162.96
WS-20	32.70	34.86	162.40	163.57

Table S1. The binding energies of W 4f and S 2p respectively from WS-10, WS-15 and WS-20.

Table S2. Comparison of NH_3 sensing performances between tungsten oxysulphide and other reported TMDs.

Sensing material	S (%)	Conc.	Lowest Conc.	Ref.
		(ppm)	detected (ppm)	
Single-layer MoSe ₂	300	300	100	[S3]
SnS ₂ /SnO ₂ composite	148	100	10	[S4]
Au doped MoS ₂	120	100	25	[S5]
Exfoliated SnS ₂	320	500	20	[S6]
TiO ₂ QDs/WS ₂	140	500	20	[S7]
PANI-WS ₂	81	200	50	[S8]
WS ₂ /WO ₃ nanohybrid	420	1000	250	[S9]
MoS ₂ thin film	120	100	10	[S10]
MoTe ₂	90	100	2	[S11]
Tungsten oxysulphide	450.23	100	0.01	This work

Table S3. The total energies (E_{total}) of WS₂ configuration system at T_{W1} , T_{S1} and T_{h1} sites.

Material	E_{total} - T_{W1} (eV)	E_{total} - T_{S1} (eV)	E_{total} - T_{h1} (eV)
WS ₂	-414.03	-413.96	-414.04

Table S4. The total energies (E_{total}) of tungsten oxysulphide configuration system at T_{h2} , T_{O-N} , T_{S2} , T_{W2} and T_{O-H} sites.

Table S5. The total energies (E_{total}) of WO₃ configuration system at T_{W-N} , and T_{W-H} sites.

Material	E_{total} - T_{W-N} (eV)	E_{total} - T_{W-H} (eV)
WO ₃	-312.689	

Table S6. The $E_{gas/sensors}$, E_{gas} , $E_{sensors}$ and E_a , of tungsten oxysulphide, WS₂ and WO₃.

Material	Egas/sensors (eV)	$E_{gas}(eV)$	E _{sensors} (eV)	E _a (eV)
WS ₂	-414.040	-19.561	-394.306	-0.172
Tungsten oxysulphide	-416.061	-19.561	-396.242	-0.258
WO ₃	-312.687	-19.561	-292.956	-0.170

[Reference]

- S1 B. Cho, M. G. Hahm, M. Choi, J. Yoon, A. R. Kim, Y. J. Lee, S. G. Park, J. D. Kwon, C. S. Kim, M. Song, Y. Jeong, K. S. Nam, S. Lee, T. J. Yoo, C. G. Kang, B. H. Lee, H. C. Ko, P. M. Ajayan and D. H. Kim, *Scientific Reports*, 2015, 5, 8052.
- S2 Y. Zhang, W. Zeng and Y. Li, Ceram. Int., 2019, 45, 6043-6050.
- S3 D. J. Late, T. Doneux and M. Bougouma, Appl. Phys. Lett., 2014, 105, 233103
- S4 R. Li, K. Jiang, S. Chen, Z. Lou, T. Huang, D. Chen and G. Shen, *RSC Adv.*, 2017, 7, 52503-52509.

- S5 H. Yan, P. Song, S. Zhang, J. Zhang, Z. Yang and Q. Wang, *Ceram. Int.*, 2016, 42, 9327-9331.
- S6 Z. Qin, K. Xu, H. Yue, H. Wang, J. Zhang, C. Ouyang, C. Xie and D. Zeng, Sens. Actuators, B, 2018, 262, 771-779.
- S7 Z. Qin, C. Ouyang, J. Zhang, L. Wan, S. Wang, C. Xie and D. Zeng, Sens. Actuators, B, 2017, 253, 1034-1042.
- S8 R. K. Jha, M. Wan, C. Jacob and P. K. Guha, New J. Chem., 2018, 42, 735-745.
- S9 R. K. Jha, C. J. Meher Wan and P. K. Guha, *IEEE Sens. J.*, 2018, **18**, 3494-3501.
- S10 S. Sharma, A. kumar and D. kaur, AIP Conf. Proc., 2018, 1953, 030131.
- S11 Z. Feng, Y. Xie, J. Chen, Y. Yu, S. Zheng, R. Zhang, Q. Li, X. Chen, C. Sun, H, Zhang, W. Pang, J. Liu and D. Zhang, 2D Mater., 2017, 4, 025018.