Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Excitation energy dependent switchable emission in SrZnO₂ nanophosphors: XAS and luminescence studies

Manju^{1,2}, Megha Jain^{1,2}, Pargam Vashishtha³, Sanjay Kumar⁴, Parasmani Rajput⁵, Govind Gupta³, Ankush Vij^{6,*} and Anup Thakur^{1,#}

> ¹Advanced Materials Research Lab, Department of Basic and Applied Sciences, Punjabi University, Patiala-147 002, Punjab, India

²Department of Physics, Punjabi University, Patiala-147 002, Punjab, India

³Advanced Materials and Devices Division, CSIR-National Physical Laboratory, New Delhi-110 012, India

⁴Department of Chemistry, Multani Mal Modi College, Patiala-147 001, Punjab, India

⁵Atomic & Molecular Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai-400 085, India

⁶Nanophosphors Lab, Department of Physics, Amity University Haryana, Gurgaon-122 413, Haryana, India

*Email address: <u>vij_anx@yahoo.com</u>

#Email address: <u>dranupthakur@gmail.com</u>

Section S1:

When atom is provided with edge energy, the probability of dipole allowed transition of deep core electron of an atom *a* from ground state $|i\rangle$ into higher unoccupied state $|f\rangle$ as per Fermi's Golden rule is given as

$$\mu_a(E) \propto \sum_{f}^{E_f > E_F} |\langle f | \hat{\varepsilon}. \mathbf{r} | i \rangle|^2 \delta(E - E_f)$$
1

The sum is over all energies greater than Fermi energy (E_F) and incident electromagnetic wave is interacting with material through dipole operator $\hat{\epsilon}$. \mathbf{r} . Equation (1) can be rewritten by using one-electron propagator Green's function as

$$\mu_a(E) \propto -\frac{1}{\pi} |\langle i|\hat{\varepsilon}^* \cdot \mathbf{r}G(E)\hat{\varepsilon} \cdot \mathbf{r}|i\rangle|^2 \Theta(E - E_f)$$
²

where is Θ heaviside step function ensuring non-zero cross-section about E_F . Using Dyson equation and full atomic scattering matrix T, Taylor series expansion of one-electron propagator G is given as

$$G = G^{0} + G^{0}tG^{0} + G^{0}tG^{0}tG^{0} + \dots$$

$$G = (1 - G^{0}t)^{-1}G^{0}$$
3

The absorption cross section $\mu_a(\varepsilon)$, in terms of atomic background $\mu_0(\varepsilon)$ and multiple scattering fine structure function $\chi_l(\varepsilon)$, is given as

$$\mu_a(\varepsilon) = \mu_0(\varepsilon)[1 + \chi_l(\varepsilon)]$$

where *l* is final state angular momentum and relative energy is taken in terms of ε . Thus, XANES can be directly obtained from eq. (3) by inverting $(1-G^0 t)$ and multiplying by matrix G^0 .

Table S1: Various colorimetric parameters corresponding to luminescence observed at 270 nm and 376 nm excitation in $SrZnO_2$ nanophosphors. The tabulated parameters are calculated from ColorCalculator software which is based on parameters standardized by Illumination Engineering Society (IES).

Parameters		At 270 nm excitation	At 376 nm excitation
Commission Internationale de l'Eclairage (CIE) coordinates		(0.1791, 0.1594)	(0.2875, 0.3914)
Luminescence efficacy ratio (LER)		129	324
Distance from black body locus (D _{uv})		-0.0614	0.0431
Color quality scale (CQS)		72	71
Television light consistency index (TLCI)		22	54
IES TM30-18 parameters	R _f	70	76
	R _g	87	80

Figure S1: SrZnO₂ unit cell with (a) (004) plane; (b) (020) plane and (c) (111) plane.

Figure S2: (a) and (c) represents magnitude of Fourier transformed EXAFS function for Zn *K*-edge and Sr *K*-edge, respectively. (b) and (d) represents real part of Fourier transformed EXAFS function for Zn *K*-edge and Sr *K*-edge, respectively. (The Fourier transformed curves shown here are phase uncorrected).

Figure S3: Computerized glow curve deconvolution of thermoluminescence glow curve obtained at 1 kGy gamma radiation dose.

Figure S4: TM-30 distortion graphic for $SrZnO_2$ nanophosphors at (a) 270 nm excitation and (b) 376 nm excitation.