Supporting Information

Bio-polysaccharide Electrolyte Gated Photoelectric Synergic Coupled Oxide Neuromorphic Transistor with Pavlovian Activities

Yan Bo Guo^{a, b, c, d}, Li Qiang Zhu^{a, b, *}, Ting Yu Long^{a, b, c}, Dong Yun Wan^c, Zheng Yu Ren^{a, b, d}

^a School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P.R.China

^b Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, P.R.China

^c School of Material Science & Engineering, Shanghai University, Shanghai 200444, P.R.China

^d University of Chinese Academy of Sciences, Beijing 100049, P.R.China

^{* &}lt;u>lqzhu@nimte.ac.cn</u> or <u>zhuliqiang@nbu.edu.cn</u>

S1. Fourier transform infrared (FTIR) characterization and Atomic force microscopy (AFM) characterization

Figure S1 (a)Fourier transform infrared (FTIR) spectrum of the starch based electrolyte on glass substrate. (b) AFM surface morphology of as obtained starch film.

S2. Decomposition of starch gated IGZO neuromorphic transistors in DI water.

Figure S2 Decomposition of starch gated IGZO neuromorphic transistors after dropping in deionized water for different times of (a) 0 s, (b) 30 s, (c) 1 min and (d) 3 min.

S3. Effects of light illumination on electric-double-layer effect and impedance

spectroscopy

Figure S3. (a) Frequency dependent specific capacitance of the starch-based electrolyte film with and without light illumination. Light wavelength: 400 nm. Light intensity: $\sim 3.5 \text{mW/cm}^2$. (b) EDL capacitance (C_{EDL}) of the starch-based electrolyte film tested for five times with and without light illumination. (c) Impedance spectroscopy data of the starch-based electrolyte film with and without light illumination. (d) R value of the starch-based electrolyte film with and without light illumination.

S4. Fitting of decayed conductance and the obtained fitting parameters.

Figure S4 (a) A typical fitted channel conductance decay curve. (b) Spike number

dependent G_0 , τ and G_∞ values. Conductance was fitted with a relation: $G=(G_0-G_\infty)\cdot exp[-(t/\tau)^\beta]+G_\infty$.