Supporting Information

A novel C₆N₂ monolayer as a potential material

for charge-controlled CO₂ capture

C. He¹, M. Zhang¹, T.T. Li¹, W.X. Zhang^{2*}

¹ State Key Laboratory for Mechanical Behavior of Materials, School of Materials

Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China

² School of Materials Science and Engineering, Chang'an University, Xi'an 710064,

China

Fig. S1 (a)-(f) the structure of C₇N, C₅N₃, C₄N₄, C₃N₅, C₂N₆ and CN₇ monolayers.

^{*}Corresponding Author: W. X. Zhang (wxzhang@chd.edu.cn)

Fig. S2 Band structures of C_7N and C_4N_4 .

Fig. S3 The stable configurations of CO_2 on neutral C_6N_2 nanosheet with different adsorption sites.

Fig. S4 Adsorption energy of CO_2 as a function of the positively charged C_6N_2 monolayer. Internally, the charge density distribution under four positively charges is shown.

Fig. S5 The stable configurations and total charge density distribution of CO_2 on (a) 0 e⁻, (b) 1 e⁻, (c) 2 e⁻, (d) 2.1 e⁻, (e) 2.2 e⁻, (f) 2.5 e⁻, (g) 2.7 e⁻ and (h) 3 e⁻ charged C_6N_2 monolayer.

Fig. S6 The stable configurations and total charge density distribution of H₂ on (a) 0 e⁻,

(b) 1 e⁻, (c) 2 e⁻, (d) 3 e⁻ charged C_6N_2 monolayer.

Fig. S7 The stable configurations and total charge density distribution of N₂ on (a) 0 e⁻,

(b) 1 e⁻, (c) 2 e⁻, (d) 3 e⁻ charged C_6N_2 monolayer.

Fig. S8 The stable configurations and total charge density distribution of CH₄ on (a) 0

 e^{-} , (b) 1 e^{-} , (c) 2 e^{-} , (d) 3 e^{-} charged C_6N_2 monolayer.

Fig. S9 Adsorption energy of CO_2 , H_2 , CH_4 and N_2 as a function of positively charged C_6N_2 monolayer.

Table S1 The G values crossing the Fermi level for the absorption systems of CO_2 , H_2 ,

	0	1	2	3
CO ₂	2	10	10	6
H_2	2	10	10	12
CH ₄	6	10	10	8
N_2	2	10	10	10

 $CH_4,$ or N_2 on C_6N_2 monolayer with different negatively charges state.