Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Black arsenene as a promising anisotropic sensor with high

sensitivity and selectivity: insights from a first-principles

investigation

Jianjun Mao¹ and Yue Chen^{1,2,*}

¹Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China ²HKU Shenzhen Institute of Research and Innovation, Yuexing 2nd Road, Nanshan, Shenzhen 518057, China

^{*} Corresponding author. Email: <u>yuechen@hku.hk</u>

(a) NH ₃		° ° ° °	~~~~~	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Initial configuration	Top view						
	view	<u>1</u>	www	<u>177777</u>	www	22222	2727273
Configuration after structural optimizaiton	Top view Side						
<i>∆E(</i> eV)	view	<u>0</u>	0	0.003	0.054	0	0.055
(b) CO		<u>a</u> <u>a</u> <u>a</u>	a a a	a a a a	° ° ° °	•	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Initial configuration	Top view Sido						
	view	222223	222223	22222	22222	222222	22222
Configuration after structural	Top view						
optimizaiton	Side view	2000000	222222	202000	· · · · · · · · · · · · · · · · · · ·	222223	2 2 2 2 2 2 2
⊿ <i>E(</i> eV)		0	0.001	0.01	0.038	0.05	0.088
(c) CO ₂							
(c) CO ₂ Initial configuration	Top view						
(c) CO ₂	Top view Side view	inini	inini		inn.		
(c) CO ₂ Initial configuration Configuration after	Top view Side view Top view	itini itini itini			inin Inini		
(c) CO ₂ Initial configuration Configuration after structural optimizaiton	Top view Side view Top view Side view		inin Inin I				
(c) CO ₂ Initial configuration Configuration after structural optimizaiton	Top view Side view Top view Side view		0.049	0.038	0.051	0.11	0.115
(c) CO ₂ Initial configuration after structural optimizaiton ∠E(eV)	Top view Side view Top view Side view		0.049	0.038	0.051	0.11	0.115
(c) CO ₂ Initial configuration after structural optimizaiton ∠E(eV) (d) NO	Top view Side view Top view Side View Side		0.049	0.038	0.051	0.11	0.115
(c) CO ₂ Initial configuration after structural optimizaiton ∠E(eV) (d) NO	Top view Side view Side view Top view Side view		0.049		0.051	0.11	0.115
(c) CO ₂ Initial configuration after structural optimizaiton ∠E(eV) (d) NO Initial configuration after structural optimizaiton	Top view Side view Side view Side view Side view Side Side		0.049	0.038	0.051	0.11	0.115
(c) CO ₂ Initial configuration after structural optimizaiton ∠E(eV) (d) NO Initial configuration after structural optimizaiton	Top view Side view Side view Side view Side view Top view Side view		0.049		0.051	0.11	0.115

Figure S1 Possible adsorption configurations before and after structural optimizations. Several typical orientations of gas molecules with respect to black arsenene are considered. Relative energy differences (ΔE) with respect to the preferred adsorption configuration are also given for comparison. The green, cyan, pink, red, and brown spheres represent As, N, H, O, and C atoms, respectively.

Figure S2. Total energy fluctuations of the adsorptions of (a) NH_3 , (b) CO, and (c) CO_2 on B-As at specific temperatures. Insets are the snapshots of molecular dynamics simulations at 4 ps.

Figure S3. Total energy fluctuations of the adsorptions of NO (a, b) and NO₂ (c, d) on B-As at different temperatures. Insets are the snapshots of molecular dynamics simulations at 4 ps.

Ab-initio molecular dynamics simulations (AIMD) adopting the canonical (NVT) ensemble were performed with a time step of 1 fs for a total simulation time of 4 ps at various temperatures. At low temperatures (e.g., 50 K), all gas molecules can sustain their adsorption positions as shown in Fig. 1 of the manuscript. Higher temperature (e.g., 300 K) may induce desorption of CO, CO₂, and NH₃, of which the adsorption strengths on B-As are low. However, NO and NO₂, which have higher adsorption strengths, can still maintain their favor adsorption positions at 300 K (see Figure S2

and **S3)**.

	NH ₃	СО	CO ₂	NO	NO ₂
$E_{ads} (eV)-vdW-D2$	-0.26	-0.14	-0.16	-0.33	-0.34
$E_{ads} (eV)-$ vdW-D3	-0.24	-0.14	-0.16	-0.32	-0.33

Table S1 Adsorption energies (E_{ads}) (eV) corresponding to the most favored configurations as calculated using different vdW correction methods.

From the conventional transition state theory, the recovery time can be expressed as $\tau = \omega^{-1} \exp(-E_{ad}/k_BT)^1$, where *T* is temperature, k_B is Boltzmann's constant, and ω is the attempt frequency. If ω is taken as $10^{13} \text{ s}^{-1} \text{ }^2$, the recovery time at room temperature (300 K) of these gas molecules on B-As is estimated.

Table S2 Recovery time of gas molecules adsorbed on B-As at room temperature.

	NH ₃	СО	CO ₂	NO	NO ₂
E _{ad} (eV)	-0.26	-0.14	-0.16	-0.33	-0.34
τ (s)	2.33×10-9	2.24×10 ⁻⁹	4.87×10 ⁻¹¹	3.49×10 ⁻⁸	5.14×10 ⁻⁸

Figure S4. Spin-polarized band structures of pure black arsenene (a), and CO (b), CO₂ (c), NH₃ (d), NO (e), and NO₂ (f) adsorbed B-As. Fermi level is located at 0 eV.

Figure S5. *I-V* curves (half of total current) of black arsenene before and after the adsorptions of NH₃, CO, and CO₂.

Figure S6. Spin-polarized transmission spectra of black arsenene before and after the adsorptions of NO and NO₂ along the armchair (a, b) and zigzag (c, d) directions. The vertical dashed lines in (b) and (d) denote the bias windows.

Reference

- 1.Y.H. Zhang, Y.B. Chen, K.G. Zhou, C.H. Liu, J. Zeng, H.L. Zhang and Y. Peng, *Nanotechnology*, 2009, 20, 185504.
- 2.A. Kokalj, Corros. Sci., 2013, 68, 195-203.