Super Stable Phosphors (Ba,Sr)LuAl₂Si₂O₂N₅:Ce³⁺,Eu²⁺

Dawei Wen,*a,b,‡ Hideki Kato^b and Masato Kakihana^b

a. School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong, 529020 China.

b. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan.

Corresponding Author: Dawei Wen. ontaii@163.com

ABSTRACT:

Phosphors are suffering from decreasing light output due to heat, oxygen and water degradation during the device fabrication process and in the working environment. Here, we report a series of $(Ba,Sr)LuAl_2Si_2O_2N_5:Ce^{3+},Eu^{2+}$ phosphors which maintain initial luminescence intensity after annealed in air up to 800 °C or immersed in water for 5 days. Powder X-ray diffraction for fresh and annealed samples and thermogravimetric/differential thermal analysis supported the high stability of the host lattice of $(Ba,Sr)LuAl_2Si_2O_2N_5$. Electron spin resonance demonstrated that the majority of Eu maintained divalence even after heating at 800 °C in air. The robust host lattice and stable valence of activators are responsible for the high stability of $(Ba,Sr)LuAl_2Si_2O_2N_5:Ce^{3+},Eu^{2+}$ phosphors. The high chemical stability originates from the featured star-like N[(Al/Si)(O/N)₃]₄ building block and condensed three dimensional rigid framework. The $(Ba,Sr)LuAl_2Si_2O_2N_5:Ce^{3+},Eu^{2+}$ phosphors are potential candidates for lighting and display application, especially for which needs high temperature treatment in the package process.

			Sintering conditions		
Composition	Raw materials	Pre-sintering temperature (°C) & Time (h)*	Temperature (°C)	Time (h)	Atmosphere
$Sr_{0.99}Eu_{0.01}Si_2O_2N_2$	SrCO ₃ , Eu ₂ O ₃ , Si ₃ N ₄	Not performed	1400	4	Ar-H ₂ (4%)
$Sr_{1.98}Eu_{0.02}Si_5N_8$	Sr ₃ N ₂ , EuF ₃ , Si ₃ N ₄	Not performed	1600	8	N ₂
$Sr_{0.99}Eu_{0.01}Al_2O_4$	SrCO ₃ , Eu ₂ O ₃ , Al ₂ O ₃	Not performed	1250	4	Ar-H ₂ (4%)
Sr _{2.97} Eu _{0.03} SiO ₅	SrCO ₃ , Eu ₂ O ₃ , SiO ₂	800 & 3	1550	4	Ar
$Ba_{0.99}Sr_{0.99}Eu_{0.02}SiO_4$	BaCO ₃ , SrCO ₃ , Eu ₂ O ₃ , SiO ₂	800 & 3	1200	4	Ar-H ₂ (4%)

Table S1. Synthesis conditions of phosphors for comparison.

*The pre-sintering process was performed in air.

Sample	Condition	O(wt%)	N(wt%)			
SrLuAl ₂ Si ₂ O ₂ N ₅	before	7.11%	11.88%			
	after	8.29%	11.75%			
BaLuAl ₂ Si ₂ O ₂ N ₅	before	7.17%	10.54%			
	after	7.58%	10.26%			

Table S2. Oxygen and nitrogen content of $SrLuAl_2Si_2O_2N_5$ and $BaLuAl_2Si_2O_2N_5$ before and 800 °C annealed in air.

S1. CIE coordinates for Figure the SrLu_{0.99}Ce_{0.01}Al₂Si₂O₂N₅, $Sr_{0.99}Eu_{0.01}LuAl_{2}Si_{2}O_{2}N_{5}, \ BaLu_{0.99}Ce_{0.01}Al_{2}Si_{2}O_{2}N_{5} \ and \ Ba_{0.99}Eu_{0.01}LuAl_{2}Si_{2}O_{2}N_{5}$ samples. The corresponding colour coordinates are (0.162,0.170), (0.319,0.535), (0.259,0.514), (0.159, 0.155) and for SrLu_{0.99}Ce_{0.01}Al₂Si₂O₂N₅, $Sr_{0.99}Eu_{0.01}LuAl_2Si_2O_2N_5$, $BaLu_{0.99}Ce_{0.01}Al_2Si_2O_2N_5$ and $Ba_{0.99}Eu_{0.01}LuAl_2Si_2O_2N_5$, respectively.

Figure S2. Photoluminescence spectra of (a) $SrLu_{0.99}Ce_{0.01}Al_2Si_2O_2N_5$, (b) $Sr_{0.99}Eu_{0.01}LuAl_2Si_2O_2N_5$, (c) $BaLu_{0.99}Ce_{0.01}Al_2Si_2O_2N_5$ and (d) $Ba_{0.99}Eu_{0.01}LuAl_2Si_2O_2N_5$ in energy scale. In (a), the energy difference of the two components from Ce³⁺ is 2029 cm⁻¹. The difference matched well with the ~2000 cm⁻¹ between ${}^{2}F_{5/2}$ and ${}^{2}F_{7/2}$ of Ce³⁺, indicating that the pairs of components originated from one luminescence center. The phenomenon is similar in (c) (energy difference: 1863 cm⁻¹).

Figure S3. Normalized PL spectra of (a) $SrLu_{0.99}Ce_{0.01}Al_2Si_2O_2N_5$, (b) $Sr_{0.99}Eu_{0.01}LuAl_2Si_2O_2N_5$, (c) $BaLu_{0.99}Ce_{0.01}Al_2Si_2O_2N_5$ and (d) $Ba_{0.99}Eu_{0.01}LuAl_2Si_2O_2N_5$ before and after 800 °C heat treatment in air.

Figure S4. XRD profiles of (a) $SrSi_2O_2N_2$ and (b) $SrAl_2O_4$ before and after annealing treatment at 800 °C. ($SrAl_2O_4$ was selected to represent the oxide hosts)

Figure S5 ESR spectra of $SrSi_2O_2N_2$:1%Eu before and after annealing (focus in the range of 3400-3600 G).

Figure S6. Reflectance spectra of SrSi₂O₂N₂:1%Eu before and after annealing.

Figure S7. XRD patterns of (a) $SrLuAl_2Si_2O_2N_5$ and (b) $BaLuAl_2Si_2O_2N_5$ before and after water immersion before and after 5 days water immersion.