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General Summary: Reagents and solvents were purchased from commercial sources and used without 

further purification unless otherwise specified. Thin layer chromatography (TLC) was performed on 

SiO2-60 F254 aluminum plates with visualization by UV light or staining. Flash column 

chromatography was performed using Purasil SiO2-60, 230–400 mesh from Fisher. Fluorine doped tin 

oxide (FTO) glass plates (surface resistance 7/sq) were purchased from Sigma Aldrich.  1H NMR 

spectra were recorded on a Bruker Avance DRX-500 (500 MHz spectrometer) and a Bruker Avance-

300 (300 MHz) spectrometer and were reported in ppm using solvent as an internal standard (TMS). 

Chemical shifts (δ) are given in parts per million (ppm) relative to TMS and referenced to residual 

protonated solvent purchased from Cambridge Isotope Laboratories, Inc. (CDCl3: δH 7.26 ppm; 

DMSO-d6: δH 2.50 ppm). Data reported as: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, 

m = multiplet, b = broad, ap = apparent; coupling constant(s) in Hz; integration. 

Synthesis of monomers 

Synthesis of TTDT2 has been reported in our previous study.1  T3 and DPPT2 were synthesized based 

on reported work.2-5 All NMR correlated to those reported studies. 

Synthesis of DPPF2 

3,6-di(furan-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (1).  

Under nitrogen, Potassium tert-butylate (2.98 g, 26.6 mmol) was added to t-amyl alcohol (25 mL) in a 

3 neck round bottom flask. 2-furancarbonitrile (2 g, 21.5 mmol) was added. The reaction was protected 

from light and heated until reflux. A solution of dimethyl succinate (1.74 g, 0.01 mol) in t-amyl alcohol 

(5.5 mL) wad added dropwise over 1 hour and the mixture was allowed to stir overnight. Then, the 

mixture was cooled to 50˚C and added with methanol (60 mL) and acetic acid (8 mL). The mixture was 

heated to 130˚C for 30 minutes then cooled to room temperature and vacuum filtered. The solid was 

collected washed with methanol and water to obtain the pure product as a dark purple powder (1.5 g, 

56%): 1H NMR (300 MHz, DMSO-d6) δ 11.19 (d, J = 4.2 Hz, 2H), 8.05 (d, J = 3.7 Hz, 2H), 7.66 (d, J 

= 3.7 Hz, 2H), 6.84 (dd, J = 4.9, 2.7 Hz, 2H). 

 

2,5-bis(2-ethylhexyl)-3,6-di(furan-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPPF2).  

Under nitrogen, 2-Ethylhexylbromide (0.48 mL, 2.9 mmol) was added to a mixture of compound 1 (0.3 

g, 1.12 mmol), anhydrous potassium carbonate (0.464 g, 3.36 mmol), and DMF (10 mL) in a 2-neck 

round bottom flask. The mixture was stirred at 140˚C overnight. After cooling to room temperature, the 

solution was quenched with 0.1 M HCl and extracted with diethyl ether. The organic layer was dried 

over Na2SO4 and concentrated under reduced pressure. Pure produce was obtained as a red solid in 27% 

yield (153 mg): 1H NMR (500 MHz, Chloroform-d) δ 7.98 (d, J = 3.6 Hz, 2H), 7.26 (d, J = 1.8 Hz, 2H), 

6.34 (dd, J = 3.7, 1.8 Hz, 2H), 3.69 (dd, J = 7.5, 1.8 Hz, 4H), 1.10 – 0.37 (m, 30H).
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NMR Analysis  

  

Figure S1. 1H NMR spectrum of 1 (DMSO, 300 MHz).  
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Figure S2. 1H NMR spectrum of DPPF2 (CDCl3, 500 MHz).
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Details of the Electropolymerization 

Table S1. Preparation of poly(T3-DPPT2-T3-TTDT2)  

Compound Molar 

mass 

(g/mol) 

Eq. Mass Amount 

 

Volume 

DPPT2 525 1 5.25 mg 1 mmol - 

T3 248 2 4.96 mg 2 mmol - 

TTDT2 475 1 4.75 mg 1 mmol - 

Tetrabutylammonium 

hexafluoro phosphate 
387 100 387 mg 100 mmol - 

Acetonitrile anhydrous (98%) 41 - - - 10 ml 

   

Table S2. Preparation of poly(T3-DPPF2-T3-TTDT2) 

Compound Molar 

mass 

(g/mol) 

Eq. Mass Amount 

 

Volume 

DPPF2 498 1 4.92 mg 1 mmol - 

T3 248 2 4.96 mg 2 mmol - 

TTDT2 475 1 4.75 mg 1 mmol - 

Tetrabutylammonium 

hexafluoro phosphate 
387 100 387 mg 100 mmol - 

Acetonitrile anhydrous (98%) 41 - - - 10 ml 

 

Polymerisation and electrochemical characterisation of PolyT3, Poly (T3-TTDT2), and Poly (T3-

TTDT2) have been reported in our previous study.6  

 

 

Figure S3. Successive CVs for the electro polymerisation of T3-DPPF2. 
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Figure S4. CV of poly(T3-DPPF2) in the BGE. 

 

 

Segment 1: 

peak potential (Ep), peak current (Ip), and electric charge (Ah) 

Ep = -1.702 V   ip = -2.604E-5 A   Ah = -1.733E-5 C 

 

Ep = -1.102 V  ip = -1.201E-6 A   Ah = -5.615E-7 C 

Ep = 0.351 V  ip = -7.786E-6 A   Ah = -6.250E-6 C 

Ep = 1.048 V  ip = -2.342E-5 A   Ah = -2.119E-5 C 

Segment 2: 

Ep = -1.094 V  ip = 5.135E-6 A   Ah = 5.019E-6 C 

Ep = -1.911 V  ip = 2.423E-5 A   Ah = 1.624E-5 C 
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Figure S5. CV of DPPF2 only in BGE; DPPF2 was shown to be CV active but not capable of 

polymerization without T3 

peak potential (Ep) = 0.234 V peak current (Ip) = 5.665E-8 A  electric charge (Ah) = 4.528E-8 C 

Ep = 0.680 V   Ip = 4.973E-6 A    Ah = 5.311E-8 C   

 

-1.5 -1.0 -0.5 0.0 0.5 1.0

-8

-6

-4

-2

0

2

4

6

8

C
u

rr
e

n
t 

(µ
A

)

Potential (V) wrt SCE

 

Figure S6. CV of DPPT2 only in BGE;6 DPPT2 was shown to be CV active but not capable of 

polymerization without T3 

Segment 1:  

Ep = -1.145 V   Ip = 3.058E-6 A  Ah = 1.886E-6 C   

Ep = 0.000 V   Ip = 1.244E-7 A  Ah = 7.148E-8 C   

Ep = 0.947 V   Ip = 3.360E-6 A  Ah = 2.069E-6 C   

Segment 2:  

Ep = 0.854 V   ip = -3.000E-6 A  Ah = -2.819E-6 C   

Ep = -1.198 V   ip = -1.876E-6 A  Ah = -9.077E-7 C 
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Figure S7. Successive CV’s of DPPT2 and TTDT2 in a 1:1 mixture shows attempt of polymerization 

with decrease current respect to number of scans. 

 

Table S3.  Comparison of the significant onset peaks for polymers of interests 

 Onset   Current   

 poly(T3-

DPPT2-T3-

TTDT2) 

poly(T3-

DPPF2-T3-

TTDT2) 

 poly(T3-

DPPT2-T3-

TTDT2) 

poly(T3-

DPPF2-T3-

TTDT2) 

Current 

deviation 

Positive regime onset 1 0.688 V 0.429 V  12.34 μA 51.06 μA 4.1377 

Positive regime reverse 

onset 1 

0.593 V 0.636 V  -5.39 μA -39.55 μA 7.3376 

Negative regime highest 

onset 1 

-1.071 V -1.708V  19.02 μA 111.3 μA 5.8517 

Negative regime highest 

reversible onset 1 

-1.141 V -1.942 V  -21.35 μA -122.6 μA 5.7423 

 Onset   Current   

 poly(T3-

DPPT2) 

poly(T3-

DPPF2) 

 poly(T3-

DPPT2) 

poly(T3-

DPPF2) 

Current 

deviation 

Positive regime onset 1 0.644 V 0.347 V  11.24 μA 11.88 μA 1.05 

Positive regime reverse 

onset 1 

0.520 V 0.674 V  -6.43 μA -16.96 μA 2.63 

Negative regime highest 

onset 1 

-1.080 V -1.702V  25.07 μA 44.37 μA 1.84 

Negative regime highest 

reversible onset 1 

-1.17 V -1.911 V  -30.94 μA -66.14 μA 2.13 
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Nyquist plots 

Figure S8. Nyquist plots for AC impedance analysis of poly(T3-DPPT2- T3-TTDT2) at varying frequencies (positive) 
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Figure S9. Nyquist plots for AC impedance analysis of poly(T3-DPPT2- T3-TTDT2) at varying frequencies (negative) 
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Figure S10. Nyquist plots for AC impedance analysis of poly(T3-DPPF2- T3-TTDT2) at varying frequencies (positive) 
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Figure S11. Nyquist plots for AC impedance analysis of poly(T3-DPPF2-TTDT2) at varying frequencies (negative) 
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Figure S12. Nyquist plots for AC impedance analysis of poly(T3-DPPF2) at varying frequencies (positive) 
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Figure S13. Nyquist plots for AC impedance analysis of poly(T3-DPPF2) at varying frequencies (negative)
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Table S4. Electrical parameters extracted from Nyquist plots of AC impedance analyses of poly(T3-

DPPF2) (top). Dual rail transmission line circuit (middle) and simplified equivalent circuit (bottom) 

used to extract data are also shown. 7-8 

 

 

Figure S14. RS-series resistance of the cell, Re-resistance for electron transport along the polymer 

backbone, Cd-double layer capacitance between polymer-electrolyte interface, W-Warberg impedance 

for ingress and egress of counter ions by diffusion, C-capacitance of the high frequency pure 

capacitive regime. 

 

DC Voltage (V) Rs (Ω) Re (Ω) Cd (µF) W (µΩ) C (µF) 

-2 54.41 76.38 4.38E+00 14150 4.86E+02 

-1.8 54.28 89.03 8.15E+00 17600 8.06E+02 

-1.6 55.56 9.14E+01 5.39E+00 4411 2.10E+02 

-1.4 48.97 1.00E+02 5.23E+00 785.2 7.31E+01 

-1.2 39.69 1.53E+03 2.17E+02 494 1.12E+02 

-1 38.29 1.68E+04 4.58E+01 530.6 5.64E+01 

-0.8 40.84 3.79E+04 2.86E+01 615.7 2.56E+01 

-0.6 48.17 3.17E+04 3.72E+01 707.9 2.14E+01 

-0.4 49.34 2.64E+04 3.65E+01 783.8 2.03E+01 

-0.2 51.13 2.20E+04 3.59E+01 921.1 2.06E+01 

0 54.75 2.44E+04 2.86E+01 1300 1.81E+01 

0.2 54.97 2.15E+04 2.28E+01 1492 2.19E+01 

0.4 49.19 2.89E+02 7.94E+01 890.3 7.39E+01 

0.6 60.97 5.86E+01 1.48E+01 4065 1.43E+02 

0.8 63.41 7.20E+01 1.17E+01 15650 5.47E+02 

1 64.21 7.41E+01 8.88E+00 25660 8.10E+02 
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SEM-EDX analysis 

 

Figure S15. SEM image and SEM-EDX spot analysis of of T3-DPPT2- T3-TTDT2 n-type 

 

Figure S16. SEM image and SEM-EDX spot analysis of of T3-DPPT2- T3-TTDT2 p-type 
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Figure S17. SEM image and SEM-EDX spot analysis of T3-DPPF2- T3-TTDT2 n-type 

 

 

Figure S18. SEM image and SEM-EDX spot analysis of T3-DPPF2- T3-TTDT2 p-type 
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Table S5: Theoretical atomic ratios of diblock-copolymers  

 

 

Poly 

(TTDT2-T3) 

Poly 

(DPPT2-T3) 

Poly 

(DPPF2-T3) TTDT2 DPPT2 DPPF2 

C 80.0% 82.3% 82.3% 80.0% 83.3% 83.3% 

S 15.5% 9.80% 5.88% 13.3% 5.56% 0.00% 

O 0.00% 3.92% 7.84% 0.00% 5.56% 11.1% 

N 3.92% 3.92% 3.92% 6.67% 5.56% 5.56% 

 

 

Optical data 

UV−vis−NIR spectra were measured with a Cary 5000 instrument; energy level schematic derived 

from peak maximum and onset of peaks observed in the absorbance spectra.  Second onset used 

unless otherwise noted. The onset was taken from the spectra and then the equation below was used to 

calculate the band gap. The data set or result was then extrapolated in graph form in which the y axis 

is E(eV).  

Using the following equation,   

Eg = 1240/ hv where Eg is energy gap and hv is wavelength. 

 

Table S6. Absorbance max for polymers made on FTO glass 

 

 

Polymer 

Positive Potential 

max  (nm) 

Eg (eV) 

Onset (nm) 

Eg (eV) 

Negative 

Potential 

max  (nm) 

Eg (eV) 

Onset (nm) 

Eg (eV 

poly(T3-DPPT2- 

T3-TTDT2) 

390, 761, 1051(S), 

1579 

3.18, 1.63, 1.18, 

0.785 

581, 945, 1271, 

1349(1st) 

2.13, 1.31, 

0.975, 0.919 

401, 769(S), 1058, 

1564 

3.09, 1.61, 1.17, 

0.793 

621, 861, 1252, 

1331(1st) 

1.99, 1.44, 0.99, 

0.932 

poly(T3-DPPF2- 

T3-TTDT2) 

361, 805, 1604 

3.43, 1.54, 0.773 

592, 1237, 1350 

(1st) 

2.09, 1.00, 0.918 

474, 879, 1552 

2.62, 1.41, 0.799 

586, 1285, 1354 (1st) 

2.12, 0.965, 0.916 

poly(T3-DPPF2) 

366, 689, 1116(S), 

1538 

3.39, 1.79, 1.11, 

0.806 

561, 905, 1305, 

1401(1st) 

2.21, 1.37, 

0.950, 0.885 

404, 695(S), 1079(S), 

1610, 1818(S) 

3.07, 1.78, 1.15, 

0.770, 0.682 

623, 850, 1310, 

1399(1st), 1760, 

1775(1st) 

1.99, 1.46, 0.946, 

0.886, 0.704, 0.698 
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 Figure S19. Absorbance spectra for Poly(T3-DPPF2); black line – n-type; red line – p-type  

 

 

Figure S20. Schematic energy level diagrams for n-type poly(T3-DPPT2- T3-TTDT2) 
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Figure S21. Schematic energy level diagrams for p-type poly(T3-DPPT2-T3-TTDT2) 

Figure S22. Schematic energy level diagrams for n-type poly(T3-DPPF2-T3-TTDT2) 
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Figure S23. Schematic energy level diagrams for p-type poly(T3-DPPF2-T3-TTDT2) 

 

 

Figure S24. Schematic energy level diagrams for n-type poly(T3-DPPF2) 
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Figure S25. Schematic energy level diagrams for p-type poly(T3-DPPF2) 
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