Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2020

Supplementary Materials for Switchable third ScFeO₃ polar ferromagnet with YMnO₃type structure

Yosuke Hamasaki¹, Tsukasa Katayama², Shintaro Yasui³, Takahisa Shiraishi⁴, Akihiro

Akama⁴, Takanori Kiguchi⁴, Tomoyasu Taniyama³, and Mitsuru Itoh³

¹Department of Applied Physics, National Defense Academy, Yokosuka 239-8686, Japan

²Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 112-0033, Japan

³Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259-J2-19,

Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

⁴Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

The PDF file includes

Materials and Methods Figures S1 to S8

Materials and Methods

Materials

ScFeO₃ films were deposited by pulsed laser deposition (PLD) technique with the fourthharmonic wave of a Nd:YAG laser ($\lambda = 266$ nm). La_{1-x}Sr_xMnO₃ (xLSMO) (x= 0.2 and 0.3) films were grown on SrTiO₃(STO)(111) substrate at 700°C under O₂ pressure of 20 mTorr. ScFeO₃ films were deposited at 700°C under O₂ pressure of 20 mTorr. Thickness of *x*LSMO films were ~100 nm, and that of ScFeO₃ film was ~50 nm. The repetition rate and fluence of the laser were 5 Hz and 0.96 Jcm⁻², respectively. A ScFeO₃ target was prepared using α -Fe₂O₃ and Sc₂O₃ powders, and sintering at 1350 °C for 6 hours in air. *x*LSMO targets were prepared using La₂O₃, SrCO₃ and MnO₂ powders. The mixtures were sintered at 1450°C for 12h under O₂ flow.

Methods

Structural characterization

The crystal structures of the films were characterized by high-resolution X-ray diffraction (HRXRD) using a Rigaku Smart-Lab diffractometer, where X-ray was monochromatized using a Ge(220) 2-bounce crystal and Cu K α radiation (λ =1.5406 Å). Reciprocal space mapping (RSM) was performed to determine the lattice constants. The film structure was characterized by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray (EDX) observations using a JEOL JEM-ARM200F.

Ferroelectric and magnetic characterization

In order to evaluate the ferroelectric properties, we fabricated a capacitor structure. Pt with ϕ 100 μ m and 0.2LSMO film, used for top and bottom electrodes, respectively, were deposited on SrTiO₃(111) substrates. Polarization *vs.* electric field (*P-E*) hysteresis loops were collected using a ferroelectric tester (Radiant, Precision Multiferroic II and Toyo Corporation, FCE). Field-cooled (FC)

dc magnetizations and magnetization hysteresis curves were measured using a Quantum Design Magnetic Property Measurement System (MPMS). FC magnetizations were recorded at 1000 Oe in the temperature range 5-300 K. X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) spectra were measured at 35 K at a field of 1 kOe with polarized light switching mode after application of 50 kOe using BL16A in KEK-PF.

Detail of Deposition of YMnO₃-type ScFeO₃ on electrode film

In our previous work, single phase hexagonal ScFeO3 films were obtained on MgAl2O4(001) and Al₂O₃(0001) substrates.¹ Based on the results, we selected candidates for bottom electrodes to stabilize $YMnO_3$ -type ScFeO₃. First, we focused on a MgAl₂O₄(001) substrate. MgAl₂O₄ have a spinel-type structure, and their in-plane symmetry is square. Conductive materials with spinel related structure are Fe₃O₄, LiTi₂O₄ and TiN, however these compounds are not suitable for a growth condition in an oxygen atmosphere. Then, we selected La doped $BaSnO_3$ with a perovskite structure. Lattice constants of $BaSnO_3$ is a = 4.1085 Å which is close that of MgAl₂O₄ (a = 4.042 Å). We attempted to grow ScFeO₃ films on La doped BaSnO₃ epitaxial films deposited on SrTiO₃(001) substrates. Bixbyite-type ScFeO₃ was mainly grown, while YMnO₃-type ScFeO₃ was also grown as a secondary phase on BaSnO₃ film. Although we also attempted to deposit ScFeO₃ on the La doped SrSnO₃ film, the single phase of YMnO₃-type ScFeO₃ has not been obtained. Second, we focused on an Al₂O₃(0001) substrate, whose structure is corundumtype with a hexagonal in-plane symmetry. Although we previously deposited ScFeO₃ film on films and substrates with hexagonal in-plane symmetry such as ZnO(0001), ITO(111) and Pt(111), $YMnO_3$ -type ScFeO₃ could not be grown as a main phase. In the view point of lattice constants, in-pane lattice constant of SrTiO₃(111) is close that of Al₂O₃(0001). We attempted to grow ScFeO₃ film on conductive perovskite films (SrRuO₃, 0.3LSMO, and 0.2LSMO) on SrTiO₃(111) substrate. As a result, we succeeded in obtaining the YMnO₃-type ScFeO₃ film on the 0.2LSMO film on the SrTiO₃(111) substrate.

Unit cell volume of *h*-Lu_{1-x}Sc_xFeO₃

The unit cell volume of h-Lu_{1-x}ScxFeO₃² and h-ScFeO₃ film (this work) was plotted in figure

Figure S1. The unit cell volume of h-Lu_{1-x}Sc_xFeO₃. Blue squares and red circle correspond to cell volumes reported in ref. 2 and this work, respectively.

ϕ -scan of *h*-Lu_{1-x}Sc_xFeO₃

Figure S2 shows the ϕ -scan pattern recorded around the ScFeO₃{304}, 0.2LSMO{110}_{pc}, and STO{110} reflections. The ϕ -scans of the 0.2LSMO{110}_{pc} and STO{110} reflections showed three peaks reflecting the in-plane three-fold symmetry. The peaks of ScFeO₃{304} showed six-fold symmetry characterized by a hexagonal unit cell.

Figure S2. ϕ -scan patterns of STO{110}, 0.2LSMO{110}_{pc}, and *h*-ScFeO₃{304}.

Crystal structure of corundum

Figure S3 shows a *P*-*E* hysteresis loop (red line) and *I*-*E*curve (black line) measured at 100 kHz and room temperature.

Figure S3. *P-E* hysteresis loop (red line) and *I-E*curve (black line) measured at 100 kHz and room temperature

Ferroelectric domain structure of h-ScFeO3 film

The ferroelectric domain structure of the *h*-ScFeO₃ film was investigated by HAADF-STEM. Figure S4 shows the HAADF-STEM image around the ferroelectric 180° domain boundary in the ScFeO₃ film.

Figure S4. HAADF-STEM image around the ferroelectric 180° domain boundary in the ScFeO₃ film.

Characterization of the InFeO₃ film by XRD measurements

In order to distinguish between the polar ($P6_3cm$) and nonpolar ($P6_3/mmc$) structures, we performed HR XRD 2θ - ω scan along the InFeO₃ [-126] direction ($P6_3/mmc$ notation), as shown in Figure S5. Figure S6 and S7 show HR XRD 2θ - ω patterns of *h*-InFeO₃ -1/3 2/3 4 and -2/3 4/3 8 reflections, respectively. Both peaks were not observed, indicating that the InFeO₃ film is a nonpolar $P6_3/mmc$.

Figure S5 HR-XRD 2θ - ω pattern of the *h*-InFeO₃ film along *h*-InFeO₃ [-126] direction.

Figure S6. HR-XRD 2θ - ω pattern of the *h*-InFeO₃ film around *h*-InFeO₃ -1/3 2/3 4 reflection.

Figure S7. HR-XRD 2θ - ω pattern of the *h*-InFeO₃ film around *h*-InFeO₃ -2/3 4/3 8 reflection.

$T_{\rm N}$ vs lattice constant c

Figure S8 shows T_N versus lattice constants c of h- $ReFeO_3$ and h- $ReMnO_3$, respectively. ^{2–7} Although the magnetic interaction along the c-axis is smaller than that along the a-axis, ⁸ T_N also decreases with the decrease in c. Compared with $ReMnO_3$, $ReFeO_3$ has a large c-axis length. This is because the occupancy of the d_{z2} orbital in $ReFeO_3$ yields a larger c lattice constant than does $ReMnO_3$, in which the d_{z2} orbital of Mn^{3+} is empty because of the repulsion between the electron and oxygen-anion ligands.

Figure S8 T_N vs. the lattice constant *c* of hexagonal *Re*FeO₃ and *Re*MnO₃.Green triangles, pink inverted triangles, ocher rhombus, orange hexagons, purple pentagons, and blue squares plot the results of Refs. 2, 3, 4, 5, 6, and 7. The navy blue circle corresponds to the ScFeO₃ film of this study. Dotted lines and solid lines are provided as guides.

REFERENCES

- Y. Hamasaki, T. Shimizu, S. Yasui, T. Taniyama, O. Sakata and M. Itoh, *Cryst. Growth Des.*, 2016, 16, 5214–5222.
- A. Masuno, A. Ishimoto, C. Moriyoshi, H. Kawaji, Y. Kuroiwa and H. Inoue, *Inorg. Chem.*, 2015, 54, 9432–9437.
- S. M. Disseler, X. Luo, B. Gao, Y. S. Oh, R. Hu, Y. Wang, D. Quintana, A. Zhang, Q. Huang, J. Lau,
 R. Paul, J. W. Lynn, S.-W. Cheong and W. Ratcliff, *Phys. Rev. B*, 2015, **92**, 054435.
- K. Uusi-Esko, J. Malm, N. Imamura, H. Yamauchi and M. Karppinen, *Mater. Chem. Phys.*, 2008, 112, 1029–1034.
- 5 T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto and H. Takagi, *Phys. Rev. B*, 2001, **64**, 104419.
- J. S. Zhou, J. B. Goodenough, J. M. Gallardo-Amores, E. Morán, M. A. Alario-Franco and R.
 Caudillo, *Phys. Rev. B Condens. Matter Mater. Phys.*, 2006, 74, 014422.
- 7 C. T. Wu, B. N. Lin and H. C. Ku, 2003, **41**, 652–661.
- 8 C. Xu, Y. Yang, S. Wang, W. Duan, B. Gu and L. Bellaiche, *Phys. Rev. B*, 2014, **89**, 205122.