## SUPPORTING INFORMATION

# Twisted Acceptors in the Design of Deep-Blue TADF Emitters: Crucial Role of the Excited-State Relaxation on the Photophysics of Methyl 

 Substituted $\boldsymbol{s}$-Triphenyltriazine DerivativesIllia E. Serdiuk ${ }^{1,2}$,* Chi Hyun Ryoo, ${ }^{2}$ Karol Kozakiewicz, ${ }^{3}$ Michał Mońka, ${ }^{1}$ Beata Liberek, ${ }^{3}$ Soo Young Park ${ }^{2}$
${ }^{1}$ Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
${ }^{2}$ Center for Supramolecular Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea
${ }^{3}$ Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
*Correspondence e-mail: illia.serdiuk@gmail.com

## Contents

## DFT/TDDFT calculations

## Photoluminescence spectra and decays

Molecular structure and unit cells in crystal phase
Parameters of OLED devices

Synthetic procedures and results of analyses

## DFT/TDDFT calculations

Table S1. Orbitals involved in the electronic transitions
*geometries of the ${ }^{1} \mathrm{CT}$ and ${ }^{3} \mathrm{CT}$ states are very similar so only the ${ }^{1} \mathrm{CT}$ one is shown

| Cmpd | $\begin{gathered} \text { Opt. } \\ \text { geometry* } \end{gathered}$ | State | Orbitals involved |
| :---: | :---: | :---: | :---: |
| DMACTRZ | $\mathrm{S}_{0}$ | CT |  |
|  |  | ${ }^{3} \mathrm{LE}$ |  |
|  | $S_{1}$ and $T_{1}$ <br> (CT) | CT | $\sum_{5}^{5}$ |
|  | T $\mathbf{2}^{\mathbf{3}} \mathbf{L E}$ ) | ${ }^{3} \mathrm{LE}$ |  |


| 2 | $\mathrm{S}_{0}$ | CT |  |
| :---: | :---: | :---: | :---: |
|  |  | ${ }^{3} \mathrm{LE}$ |  |


|  | $\begin{gathered} \mathrm{S}_{1} \text { and } \mathrm{T}_{1} \\ (\mathrm{CT}) \end{gathered}$ | CT |  |
| :---: | :---: | :---: | :---: |
|  | T ${ }_{2}\left({ }^{3} \mathrm{LE}\right)$ | ${ }^{3} \mathbf{L E}$ |  |
| 4 | $\mathrm{S}_{0}$ | CT |  |
|  |  | ${ }^{3} \mathbf{L E}$ |  |
|  | $S_{1} \text { and } T_{1}$ <br> (CT) | CT |  |

$$
\stackrel{\square}{\square}
$$



| $\mathrm{S}_{1}$ and $\mathrm{T}_{1}$ |
| :---: | :---: | :---: | :---: |
| (CT) |$\quad$ CT

Table S2. Vertical transition energies grouped by the nature of transition. Calculated for the optimized geometries of respective electronic states*

| Cmpd | State | Vertical transition energy (nm) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\mathbf{3}} \mathbf{C T}$ | ${ }^{1} \mathbf{C T}$ | ${ }^{\mathbf{3}} \mathbf{L E}(\mathbf{A})$ | ${ }^{\mathbf{3}} \mathbf{L E}$ (D) |
| DMAC-TRZ |  | 517.1 | 515.7 | 413.0 | 390.0 |
|  |  | 613.6 | 611.6 | 448.3 | 405.5 |
|  | $\mathrm{~T}_{1}\left({ }^{3} \mathrm{CT}\right)$ | 613.5 | 611.5 | 448.5 | 405.4 |
| $\mathbf{1}$ | $\mathrm{~S}_{0}$ | 508.7 | 507.3 | 404.5 | 390.0 |
|  | $\mathrm{~S}_{1}\left({ }^{1} \mathrm{CT}\right)$ | 611.0 | 609.0 | 447.9 | 405.4 |
|  | $\mathrm{~T}_{1}\left({ }^{3} \mathrm{CT}\right)$ | 610.9 | 608.9 | 448.1 | 405.3 |
| $\mathbf{2}$ | $\mathrm{~S}_{0}$ | 501.6 | 500.4 | 408.2 | 390.4 |
|  | $\mathrm{~S}_{1}\left({ }^{1} \mathrm{CT}\right)$ | 609.0 | 607.1 | 448.5 | 405.9 |
|  | $\mathrm{~T}_{1}\left({ }^{3} \mathrm{CT}\right)$ | 608.9 | 607.0 | 448.8 | 405.7 |
| $\mathbf{3}$ | $\mathrm{~S}_{0}$ | 490.3 | 489.0 | 397.8 | 390.4 |
|  | $\mathrm{~S}_{1}\left({ }^{1} \mathrm{CT}\right)$ | 605.1 | 603.1 | 446.9 | 405.6 |
|  | $\mathrm{~T}_{1}\left({ }^{3} \mathrm{CT}\right)$ | 605.0 | 603.0 | 447.2 | 405.5 |
| $\mathbf{4}$ | $\mathrm{~S}_{0}$ | 492.3 | 492.2 | 403.2 | 390.9 |
|  | $\mathrm{~S}_{1}\left({ }^{(1} \mathrm{CT}\right)$ | 572.9 | 571.6 | 425.9 | 406.6 |
|  | $\mathrm{~T}_{1}\left({ }^{3} \mathrm{CT}\right)$ | 573.2 | 571.7 | 426.4 | 406.5 |
| $\mathbf{5}$ | $\mathrm{~S}_{0}$ | 468.4 | 468.3 | 394.7 | 390.9 |
|  | $\mathrm{~S}_{1}\left({ }^{1} \mathrm{CT}\right)$ | 572.1 | 570.7 | 425.1 | 406.5 |
|  | $\mathrm{~T}_{1}\left({ }^{3} \mathrm{CT}\right)$ | 572.4 | 570.8 | 425.6 | 406.3 |
| $\mathbf{6}$ | $\mathrm{~S}_{0}$ | 501.6 | 500.4 | 408.2 | 390.4 |
|  | $\mathrm{~S}_{1}\left({ }^{( } \mathrm{CT}\right)$ | 592.4 | 590.6 | 430.6 | 406.3 |
|  | $\mathrm{~T}_{1}\left({ }^{3} \mathrm{CT}\right)$ | 592.5 | 590.6 | 431.0 | 406.1 |

${ }^{* 3}$ LE (A) - transition localized on the acceptor fragment; ${ }^{3}$ LE (D) - transition localized on the donor (DMAC) fragment.

## Photoluminescence spectra and decays



Figure S1. Fluorescence spectra of $\mathbf{5}$ in various solvents at 78 K .


Figure S2. Emission decays at RT


Figure S3. Emission decays of 6 in PMMA film at various temperatures.

Table S3. Oscillator strengths calculated from the experimental absorption and emission bands corresponding to the $\mathrm{S}_{1}-\mathrm{S}_{0}$ transitions

| Cmpd | $\boldsymbol{f}_{\boldsymbol{a b s}}$ | $\boldsymbol{f}_{\boldsymbol{e m}}$ |
| :---: | :---: | :---: |
| DMAC-TRZ | 0.035 | 0.026 |
| $\mathbf{1}$ | 0.040 | 0.033 |
| $\mathbf{2}$ | 0.025 | 0.023 |
| $\mathbf{3}$ | 0.031 | 0.021 |
| $\mathbf{4}$ | 0.010 | 0.018 |
| $\mathbf{5}$ | 0.009 | 0.022 |
| $\mathbf{6}$ | 0.007 | 0.020 |

## Molecular structure and unit cells in crystal phase


A

6

B

4
Top view


Figure S4. Crystal molecular structures (A) and unit cells (B) of 4 and 6


Figure S5. Emission decays of 4 and 6 in crystal phase.


Figure S6. Frontier orbitals of the crystal dimer of 4.

## Parameters of OLED devices



Figure S6. Current density-voltage-luminance diagram of the investigated OLEDs

## Synthetic procedures and results of analyses

2,6-Dimethylbenzamidine. A suspension of ammonium chloride ( $6.7 \mathrm{~g}, 0.127$ mol ) in dry toluene ( 135 ml ) was purged with Ar and cooled down to $-15^{\circ} \mathrm{C} .2 \mathrm{M}$ solution of trimethylaluminum in toluene ( $63.4 \mathrm{ml}, 0.127 \mathrm{~mol}$ ) was added dropwise maintaining the mixture temperature below $-10^{\circ} \mathrm{C}$. Mixture was stirred for 30 min at $-10^{\circ} \mathrm{C}$, let to heat up to RT and stirred until gas evolution finished. 2,6-Dimethylbenzonitrile ( $5 \mathrm{~g}, 0.038 \mathrm{~mol}$ ) was added and the mixture was refluxed under Ar for 3 days. The mixture was cooled to $0^{\circ} \mathrm{C}$, methanol ( 50 ml ) was added dropwise and stirring continued for 30 min . Solvents were evaporated under reduced pressure. The precipitate was washed thoroughly with toluene and then separately with hot isopropanol. Alcohol fractions were combined and evaporated to afford title compound as a free base after recrystallization from isopropanol/toluene mixture. Toluene fractions containing unreacted 2,6dimethylbenzonitrile can be used in repeated synthesis. White powder, yield 41\% ( 2.3 g ). ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSO-d6, $\delta$ ): 2.82 (s, 6H), 6.11 (broad s, 2H), 7.00 (d, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}$ ), 7.10 (dd, $1 \mathrm{H}, J=8.5 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}$ ), $8.32(\mathrm{~s}, 1 \mathrm{H})$.

## General procedure for 2-(4-bromoaryl)-4,6-diaryl-1,3,5-triazines.

 Benzamidine hydrochloride ( 11 mmol ) and potassium tert-butoxide ( 10.8 mmol ) were mixed in DMSO and stirred at RT for 30 min . 4-Bromobenzaldehyde (5 mmol ) was added and the mixture was stirred at $70-100^{\circ} \mathrm{C}$ for $15-40 \mathrm{~h}$. After cooling to RT, 2,3-dichloro-5,6-dicyano-p-benzoquinone ( 5 mmol ) was added and mixture was stirred at $50^{\circ} \mathrm{C}$ for another hour. $50 \%$ aqueous methanol was added and the precipitate was collected by filtration. Column chromatography using $30-50 \% \mathrm{CHCl}_{3}$ in hexane afforded pure title compounds.2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine. White powder, yield $87 \%$. ${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 7.58(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.62(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.70$ (d, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 8,64(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 8.75(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz})$.

2-(4-Bromophenyl)-4,6-bis(2-methylphenyl)-1,3,5-triazine. White powder, yield $65 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.82(\mathrm{~s}, 6 \mathrm{H}), 7.35-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.45$ $(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.68(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.27(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 8.55(\mathrm{~d}, 2 \mathrm{H}$, $J=7.6 \mathrm{~Hz})$.

2-(4-Bromo-2-methylphenyl)-4,6-diphenyl-1,3,5-triazine. White powder, yield $54 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.84(\mathrm{~s}, 3 \mathrm{H}), 7.50-7.64(\mathrm{~m}, 8 \mathrm{H}), 7.24$ (d, $1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 8.72(\mathrm{~d}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz})$.
2-(4-Bromo-2-methylphenyl)-4,6-bis(2-methylphenyl)-1,3,5-triazine. White powder, yield $57 \%{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.77(\mathrm{~s}, 9 \mathrm{H}), 7.33-7.39(\mathrm{~m}$, $4 \mathrm{H}), 7.44(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.49-7.52(\mathrm{~m}, 2 \mathrm{H}), 8.14(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 8.22$ (d, $2 \mathrm{H}, J=7.7 \mathrm{~Hz}$ ).

2-(4-Bromo-2,6-dimethylphenyl)-4,6-diphenyl-1,3,5-triazine. White powder, yield $63 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.28(\mathrm{~s}, 6 \mathrm{H}), 7.35(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{t}, 4 \mathrm{H}$, $J=7.5 \mathrm{~Hz}), 7.61(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 8.69(\mathrm{~d}, 4 \mathrm{H}, J=8.2 \mathrm{~Hz})$.

2-(4-Bromo-2,6-dimethylphenyl)-4,6-bis(2-methylphenyl)-1,3,5-triazine.
White powder, yield $43 \%{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.74$ (s, $6 \mathrm{H}), 7.31-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.43(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 8.21(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz})$.

2-(4-Bromo-2,6-dimethylphenyl)-4,6-bis(2,6-dimethylphenyl)-1,3,5-triazine. White powder, yield $27 \% .^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 2.2$ (s broad, 18 H ), $7.12(\mathrm{~d}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.21-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 2 \mathrm{H})$.

General procedure for 10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9,9-dimethyl-9,10-dihydroacridine (DMAC-TRZ) and its derivatives (1-6). Mixture of 9,9-dimethyl-9,10-dihydroacridine (1 mmol, 209 mg ) 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine ( 1.03 mmol ), tris(dibenzylideneacetone)dipalladium $(0) \quad(0.05 \mathrm{mmol}, 46 \mathrm{mg})$ and tri-tert-butylphosphonium tetrafluoroborate ( $0.1 \mathrm{mmol}, 29 \mathrm{mg}$ ) were dissolved in dry toluene under Ar atmosphere. Potassium tert-butoxide $(1.5 \mathrm{mmol})$ was added and the mixture was stirred at $90^{\circ} \mathrm{C}$ for $10-20 \mathrm{~h}$. Solvent was removed by evaporation, the residue was
washed by water and purified by column chromatography with $30-50 \% \mathrm{CHCl}_{3}$ in hexane as eluent.

10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9,9-dimethyl-9,10-dihydroacridine (DMAC-TRZ). Yellow powder, yield $91 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 1.72$ (s, 6 H ), $6.38(\mathrm{dd}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz} ; J=1.5 \mathrm{~Hz}$ ), 6.96-6.99 (m, 4H), $7,49(\mathrm{dd}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz} ; J=1.5 \mathrm{~Hz}), 7.55-7.59$ (m, 8H), $8.81-8.84$ (m, 4H), 9.03 $(\mathrm{d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ): $172.0,171.3,145.6,140.8$, $136.4,132.9,131.8,131.7,130.5,129.2,128.9,126.7,125.6,121.1,114.4,36.3$, 31.5 HRMS $m / z$ : calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{4}, 517.2387[M+\mathrm{H}]^{+}$; found, 517.2394. Elem. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{~N}_{4}$, \%: C 83.69; H 5.46; N 10.84. Found, \%: C 80.17; H 6.19; N 10.90 .

10-(4-(4,6-bis(2-methylphenyl)-1,3,5-triazin-2-yl)phenyl)-9,9-dimethyl-9,10dihydroacridine (1). Yellow powder, yield $91 \%{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ): 1.71 (s, 6H), 2.87 (s, 6H), 6.37 (d, 2H, $J=8.0 \mathrm{~Hz}), 6.93-7.01$ (m, 4H), 7.37-7.42 (m, 4H), 7.44-7.49 (m, 4H), 7.54 (d, 2H, $J=8.5 \mathrm{~Hz}), 8.32$ (d, 2H, $J=7.7 \mathrm{~Hz}$ ), 8.93 (d, $2 \mathrm{H}, J=8.5 \mathrm{~Hz}$ ). ${ }^{13} \mathrm{C}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ): 174.6, 170.4, 145.6, $140.8,139.3,136.3,136.2,132.1,131.8,131.7,131.5,131.3,130.5,126.6,126.4$, 125.5, 121.1, 114.4, 36.3, 31.4, 22.7. HRMS $m / z$ : calcd for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{4}, 545.2700$ $[M+\mathrm{H}]^{+}$; found, 545.2703. Elem. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{4}, \%$ : C 83.79; H 5.92; N 10.29. Found, \%: C 83.17; H 5.88; N 9.88.

10-(3-methyl-4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9,9-dimethyl-9,10dihydroacridine (2). Pale yellow powder, yield $88 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right): 1.72$ (s, 6H), $2.92(\mathrm{~s}, 3 \mathrm{H}), 6.43(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.95(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.01(\mathrm{t}$, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.36-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.56-7.66(\mathrm{~m}, 6 \mathrm{H})$, $8.59(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 8.78(\mathrm{~d}, 4 \mathrm{H}, J=8.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta): 174.2,171.7,143.9,142.5,140.8,136.3,134.5,134.1,132.9,130.3,129.3$, 129.1, 129.0, 126.6, 125.5, 120.9, 114.5, 36.2, 31.6, 22.7. HRMS $m / z$ : calcd for
$\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{4}, 531.2543[M+\mathrm{H}]^{+}$; found, 531.2547. Elem. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{30} \mathrm{~N}_{4}$, \%: C 83.74; H 5.70; N 9.88. Found, \%: C 83.22; H 5.62; N 9.52.

10-(3-methyl-4-(4,6-bis(2-methylphenyl)-1,3,5-triazin-2-yl)phenyl)-9,9-dimethyl-9,10-dihydroacridine (3). Pale yellow powder, yield $85 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ): 1.71 (s, 6H), 2.83 (s, 6H), 2.86 (s, 3H), 6.40 (d, 2H, $J=8.1$ $\mathrm{Hz}), 6.94(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.00(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.33-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.44-$ $7.48(\mathrm{~m}, 4 \mathrm{H}), 8.26(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 8.48(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 174.3,173.5,143.7,142.3,140.8,139.1,136.3,136.2,134.4$, $134.1,132.1,131.5,131.2,130.3,129.0,126.6,126.4,125.5,120.9,114.4,36.2$, 31.5, 22.6, 22.5. HRMS $m / z$ : calcd for $\mathrm{C}_{39} \mathrm{H}_{34} \mathrm{~N}_{4}, 559.2856[M+\mathrm{H}]^{+}$; found, 559.2849. Elem. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{34} \mathrm{~N}_{4}, \%$ : C 83.84; H 6.13; N 10.03. Found, \%: C 83.51; H 5.99; N 9.83.

10-(3,5-dimethyl-4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9,9-dimethyl-9,10-dihydroacridine (4). White powder, yield $85 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 500 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 1.72(\mathrm{~s}, 6 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H}), 6.50(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.95(\mathrm{t}, 2 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 7.05(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 7.47(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.57-7.61(\mathrm{~m}$, 4H), 7.62-7.66 (m, 2H), 8.74-8.76 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ( $250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ ): 176.1, 172.0, 141.8, 140.9, 139.6, 137.6, 136.1, 133.1, 130.8, 130.1, 129.3, 129.0, 126.6, 125.5, 120.7, 114.6, 36.2, 31.7, 20.8. HRMS $m / z$ : calcd for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{4}$,
 H 5.92; N 10.29. Found, \%: C 83.69; H 5.91; N 10.11.

10-(3,5-dimethyl-4-(4,6-bis(2-methylphenyl)-1,3,5-triazin-2-yl)phenyl)-9,9-dimethyl-9,10-dihydroacridine (5). White powder, yield $98 \%$. ${ }^{1} \mathrm{H}$-NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.70(\mathrm{~s}, 6 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.78(\mathrm{~s}, 6 \mathrm{H}), 6.45(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz})$, $6.93(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.01(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.14(\mathrm{~s}, 2 \mathrm{H}), 7.35-7.40(\mathrm{~m}, 4 \mathrm{H})$, $7.45(\mathrm{t}, 4 \mathrm{H}, J=6.1 \mathrm{~Hz}), 8.19(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta): 175.5,174.8,141.7,140.9,139.0,138.9,137.8,136.0,132.1,131.5,131.4$, $130.6,130.1,126.6,126.4,125.5,120.7,114.6,36.2,31.7,22.3,20.5$. HRMS $m / z:$
calcd for $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~N}_{4}, 573.3013[M+\mathrm{H}]^{+}$; found, 573.3018. Elem. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~N}_{4}, \%$ : C 83.88; H 6.34; N 9.78. Found, \%: C 83.71; H 6.35; N 9.48.

10-(3,5-dimethyl-4-(4,6-bis(2,6-dimethylphenyl)-1,3,5-triazin-2-yl)phenyl)-9,9-dimethyl-9,10-dihydroacridine (6). White powder, yield $90 \%$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.69(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 12 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 6.36(\mathrm{~d}, 4 \mathrm{H}, J=$ $7.7 \mathrm{~Hz}), 6.87-7.00(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, 2 \mathrm{H}$, $J=7.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 177.8,177.0,142.1,140.8,138.3$, $137.2,137.1,134.9,130.6,130.0,129.5,128.1,126.6,125.5,120.7,114.5,36.1$, 31.8, 20.2, 20.1. HRMS $m / z$ : calcd for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~N}_{4}, 601.3326[M+\mathrm{H}]^{+}$; found, 601.3330. Elem. Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~N}_{4}, \%$ : C 83.96; H 6.71; N 9.33. Found, \%: C 83.90; H 6.79; N 9.43.
${ }^{1} \mathrm{H}$ NMR spectra of DMAC-TRZ in $\mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectra of DMAC-TRZ in $\mathrm{CDCl}_{3}$


${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1}$ in $\mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$ in $\mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}$ in $\mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}$ in $\mathrm{CDCl}_{3}$

| - ${ }_{\text {m }}$ |  | $\stackrel{\infty}{ } \times$ | Now |
| :---: | :---: | :---: | :---: |
| ジ̇ |  | $\cdots$ | $\stackrel{\sim}{\circ} \dot{0}$ |
| 11 |  | $\downarrow$ | 11 |


${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3}$ in $\mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3}$ in $\mathrm{CDCl}_{3}$

|  |  <br>  |  | 7\% |
| :---: | :---: | :---: | :---: |
| V | L- | V |  |


${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4}$ in $\mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4}$ in $\mathrm{CDCl}_{3}$

| 능 \％ |  |  |  |
| :---: | :---: | :---: | :---: |
| $\dot{\sim} \dot{\sim}$ | －$\dot{1}$ O $\dot{\sim}$ | $\stackrel{\text { ¢ }}{\text { No }}$ | $\cdots$ |
| $\stackrel{\text { F－1 }}{\sim}$ |  | ミミ゙ | $\stackrel{\sim}{m}$ |
| 1 |  | $\downarrow$ |  |


${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5}$ in $\mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectra of 5 in $\mathrm{CDCl}_{3}$

N

${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{6}$ in $\mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6}$ in $\mathrm{CDCl}_{3}$


