Electronic Supplementary Material (ESI) for Toxicology Research. This journal is © The Royal Society of Chemistry 2019

SUPPORTING INFORMATION

"Thyroid endocrine status and biochemical stress responses in adult male Wistar rats chronically exposed to pristine polystyrene nanoplastics"

by: Fatemeh Amereh, Akbar Eslami, Simin Fazelipour, Mohammad Ismail Zibaii, Mohammad Rafiee

SI List:

S1-- Table A: Turkey's multiple comparison of thyroid hormone levels, their ratios and TSH in Rats orally administered with PS NPs (6 animals in each group).

S2—Table B: Turkey's multiple comparison of biochemical parameters. Rats orally administered with PS NPs compared to the control group (6 animals in each group).

S1: Table A

Turkey's multiple comparison of thyroid hormone levels, their ratios and TSH in Rats orally administered with PS NPs (6 animals in

PS NPs (ng/ml) (ng/ml) (pg/ml) (m IU/m Dose (mg/kg/day) 0 1.37±0.06 ^a 51.25±5.41 ^a 2.66±0.04 ^a 34±1.14 ^a 0.03±0.03 ^a 0.61±0.09 ^{ab} 3.93±0.1 1 1.29±0.06 ^a 37.75±9.42 ^a 2.14±0.03 ^b 25.6±0.6 ^b 0.04±0.04 ^b 0.84±0.1 ^{abc} 3.55±0.5 3 1.22±0.04 ^a 52.49±5.49 ^a 1.67±0.08 ^c 29.6±1.34 ^b 0.03±0.03 ^a 0.57±0.07 ^a 5.27±0.4								
Dose (mg/kg/day) $ \begin{array}{cccccccccccccccccccccccccccccccccc$		Т3	T4	FT3	FT4	T3/T4	FT3/FT4	TSH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PS NPs	(ng/ml)	(ng/ml)	(pg/ml)	(pg/ml)	-	-	(m IU/ml)
1 1.29 \pm 0.06 ^a 37.75 \pm 9.42 ^a 2.14 \pm 0.03 ^b 25.6 \pm 0.6 ^b 0.04 \pm 0.04 ^b 0.84 \pm 0.1 ^{abc} 3.55 \pm 0.5 3 1.22 \pm 0.04 ^a 52.49 \pm 5.49 ^a 1.67 \pm 0.08 ^c 29.6 \pm 1.34 ^b 0.03 \pm 0.03 ^a 0.57 \pm 0.07 ^a 5.27 \pm 0.4	Dose (mg/kg/day)							
3 1.22±0.04 ^a 52.49±5.49 ^a 1.67±0.08 ^c 29.6±1.34 ^b 0.03±0.03 ^a 0.57±0.07 ^a 5.27±0.4	0	1.37±0.06a	51.25±5.41a	2.66±0.04a	34±1.14a	0.03±0.03a	0.61±0.09ab	3.93±0.14ab
	1	1.29±0.06a	37.75±9.42a	2.14±0.03b	25.6±0.6b	0.04 ± 0.04^{b}	0.84 ± 0.1^{abc}	3.55 ± 0.54^{a}
$6 \hspace{1.5cm} 1.22 \pm 0.04^{a} \hspace{1.5cm} 50.15 \pm 5.3^{a} \hspace{1.5cm} 2.33 \pm 0.11^{b} \hspace{1.5cm} 25.8 \pm 0.69^{b} \hspace{1.5cm} 0.03 \pm 0.03^{a} \hspace{1.5cm} 0.91 \pm 0.11^{bc} \hspace{1.5cm} 3.83 \pm 0.40^{b} \hspace{1.5cm} 0.00 \pm 0.00^{a} \hspace{1.5cm} 0.00 \pm $	3	1.22±0.04a	52.49±5.49a	1.67±0.08°	29.6±1.34 ^b	0.03 ± 0.03^{a}	0.57 ± 0.07^{a}	5.27±0.41bc
	6	1.22±0.04a	50.15±5.3a	2.33±0.11 ^b	25.8±0.69b	0.03 ± 0.03^{a}	0.91 ± 0.11^{bc}	$3.83{\pm}0.4^{ab}$
10 1.15 ± 0.06^{a} 51.46 ± 7.07^{a} 0.92 ± 0.07^{d} 8.4 ± 0.79^{c} 0.03 ± 0.03^{a} 1.13 ± 0.13^{c} 5.64 ± 0.3	10	1.15±0.06 ^a	51.46±7.07 ^a	0.92 ± 0.07^{d}	8.4±0.79°	0.03±0.03a	1.13±0.13°	5.64±0.36°

each group). Results are expressed as means \pm SEM *

^{*} Different letters for the significances demonstrate that there are significant differences among groups (p < 0.05).

S2: Table B

Turkey's multiple comparison of biochemical parameters. Rats orally administered with PS NPs compared to the control group (6

	LDL	HDL	Cholesterol	Creatinine	GOT	GPT
PS NPs	(mg/dl)	(mg/dl)	(mg/dl)	(m IU/ml)	(U/L)	(U/L)
Dose (mg/kg/day)						
0	21.68±0.66a	56.75±1.8a	40.38±4.54 ^a	0.68±0.01a	171.25±2.36a	43.88±1.23ab
1	22.20±1ª	48.25±7.16 ^a	56.50±0.55b	0.73 ± 0.02^{a}	172.5±3.57a	41.0±0.91a
3	44.83±4.4 ^b	20.25±1.11°	60.00±2.18b	0.73 ± 0.02^{a}	173.75±1.38 ^a	47.25±0.43bo
6	56.731.7±c	18.50±0.65°	65.88±1.08bc	0.88 ± 0.05^{b}	189.75±6.12 ^b	48.88±0.94°
10	58.00±1.67°	18.00±1.29°	75.13±3.54°	1.00±0.05b	193.25±3.07b	52.88±0.83d

animals in each group). Results are expressed as means \pm SEM *

^{*}Different letters for the significances demonstrate that there are significant differences among groups (p < 0.05).