# Copyright The Royal Society of Chemistry, 1999 # CCDC Number: 182/1136 # Electronic CIF files associated with manuscript "Zeolite-like # Crystal Structure of an Empty Microporous Molecular Framework" # submitted to Chem Commun. (posted 14/12/98). # ---------------------------------------------------------------- data_Ni _publ_contact_author ; Matthew J. Rosseinsky Inorganic Chemistry Laboratory University of Oxford South Parks Road Oxford OX1 3QR UK ; _publ_contact_author_phone '(44) 1865 272695' _publ_contact_author_fax '(44) 1865 272690' _publ_contact_author_email matthew.rosseinsky@chem.ox.ac.uk _publ_requested_journal 'Chem. Commun.' _publ_requested_coeditor_name ; Dr Adrian Kybett ; loop_ _publ_author_name _publ_author_address 'Kepert, Cameron J.' ; Inorganic Chemistry Laboratory University of Oxford South Parks Road Oxford OX1 3QR UK (Present address: School of Chemistry, University of Sydney, NSW 2006, Australia.) ; 'Rosseinsky, Matthew J.' ; Inorganic Chemistry Laboratory University of Oxford South Parks Road Oxford OX1 3QR UK ; _audit_creation_method SHELXL _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_formula_moiety 'C15 H12 N5 Ni O6, (C2 H6 O)' _chemical_formula_structural ? _chemical_formula_analytical ? _chemical_formula_sum 'C17 H18 N5 Ni O7' _chemical_formula_weight 463.07 _chemical_melting_point ? _chemical_compound_source ? loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'Ni' 'Ni' -3.0029 0.5091 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'C' 'C' 0.0181 0.0091 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0311 0.0180 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0492 0.0322 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M Ccca _symmetry_Int_Tables_number 68 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y, z+1/2' 'x, -y, z+1/2' '-x+1/2, -y, z' 'x+1/2, y+1/2, z' '-x+1, y+1/2, z+1/2' 'x+1/2, -y+1/2, z+1/2' '-x+1, -y+1/2, z' '-x, -y, -z' 'x-1/2, -y, -z-1/2' '-x, y, -z-1/2' 'x-1/2, y, -z' '-x+1/2, -y+1/2, -z' 'x, -y+1/2, -z-1/2' '-x+1/2, y+1/2, -z-1/2' 'x, y+1/2, -z' _cell_length_a 12.156(2) _cell_length_b 18.891(3) _cell_length_c 17.584(3) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 4038.0(12) _cell_formula_units_Z 8 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used 23 _cell_measurement_theta_min 39.21 _cell_measurement_theta_max 48.69 _exptl_crystal_description 'transparent blocks' _exptl_crystal_colour blue _exptl_crystal_size_max 0.15 _exptl_crystal_size_mid 0.08 _exptl_crystal_size_min 0.05 _exptl_crystal_density_method 'not measured' _exptl_crystal_density_diffrn 1.523 _exptl_crystal_F_000 1912 _exptl_absorpt_coefficient_mu 1.841 _exptl_absorpt_correction_type none _exptl_absorpt_correction_T_min 1.0 _exptl_absorpt_correction_T_max 1.0 _exptl_special_details ; ? ; _diffrn_ambient_environment 'With mother liquor in 0.2 mm Lindemann tube' _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 1.54180 _diffrn_radiation_type CuK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device 'Enraf-Nonius CAD4' _diffrn_detector 'scintillation counter' _diffrn_measurement_method 'profile data from \w/2\q scans' _diffrn_standards_number 3 _diffrn_standards_interval_count 97 _diffrn_standards_decay_% -5.1 _diffrn_reflns_number 941 _diffrn_reflns_av_R_equivalents 0.0989 _diffrn_reflns_av_sigmaI/netI 0.1419 _diffrn_reflns_limit_h_min -13 _diffrn_reflns_limit_h_max 13 _diffrn_reflns_limit_k_min 0 _diffrn_reflns_limit_k_max 20 _diffrn_reflns_limit_l_min 0 _diffrn_reflns_limit_l_max 19 _diffrn_reflns_theta_min 4.68 _diffrn_reflns_theta_max 57.22 _reflns_number_total 866 _reflns_number_observed 413 _reflns_observed_criterion >2sigma(I) _computing_data_collection 'CAD-4 software (Enraf-Nonius, 1989)' _computing_cell_refinement 'CAD-4 software (Enraf-Nonius, 1989)' _computing_data_reduction 'RC93 (Watkin et al., 1994)' _computing_structure_solution 'SHELXS-86 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-93 (Sheldrick, 1993)' _computing_molecular_graphics 'XPMA/ZORTEP' _computing_publication_material 'CIFTAB' _refine_special_details ; Refinement on F^2^ for ALL reflections except for 0 with very negative F^2^ or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The observed criterion of F^2^ > 2sigma(F^2^) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Removal of the ethanol atoms from the refined structure, followed by treatment of the data with the SQUEEZE routine within PLATON suggested a cavity electron population of 24.6 e- per formula unit, in close agreement to 26 e- for one EtOH molecule. Structural refinement of the framework without solvent ethanol following modification of the data with the SQUEEZE routine led to significantly better refinement indices than when the ethanol molecule was included in the modelling of the raw data. With SQUEEZE, data/restraints/parameters = 866/0/123, R1 = 0.0656, wR2 = 0.1569 (for 396 data with I > 2s(I)) ; R1 = 0.1419, wR2 = 0.1870 (all data). With modelling of the ethanol molecule, data/restraints/parameters = 866/17/130, R1 = 0.0848, wR2 = 0.2028 (for 413 data with I > 2s(I)) ; R1 = 0.1728, wR2 = 0.2435 (all data). Of the two nitrate groups attached to the Ni centre, one may be considered to be bidentate and the other unidentate (as observed previously for example in [Ni(pyr)3(NO3)2]). Due to the Ni site having '..2' site symmetry, these two orientations are disordered such that each has 50% occupation. At room temperature, there is no evidence for any long range ordering of this local asymmetry. Due to the problems of high refinement correlation and weakness of the diffraction intensities, the two orientations for the nitrate group were refined isotropically and restrained such that all N-O and O-O bond lengths were equal to within an e.s.d. of 0.04 A. The disorder of the nitrate groups manifests itself elsewhere in the structure, although in most cases the displacement between the two 50% occupied positions is small and best treated by the anisotropic refinement of a single site. The only atom sites where an improvement occurred by the isotropic refinement of two 50%-occupied sites were C4 and C5 (of bpy(1)) and C11 and C12 (of the solvent ethanol molecule). Both of these fragments are involved in hydrogen bonding to the nitrate groups. The solvent ethanol molecules lie disordered about sites with symmetry '.2.' and are surrounded by four disordered nitrate groups. The carbon atoms C11 and C12 were refined isotropically with 50% occupation. Two positions for the oxygen atom, O11 and O12, were located in the difference density map. Each of these positions is consistent with there being hydrogen bonding of the ethanol molecule to the neighbouring disordered nitrate groups via an O-H..O bridge (the average O..O distance observed here is ca. 2.7 A). It seems likely that the ethanol molecules arrange themselves in the channels as hydrogen-bonded dimers. The two oxygen positions were refined isotropically whilst constraining the sum of their occupations to equal one half. Restraints were placed on the geometry of the ethanol molecule: from the analysis of over 150 structures within the Cambridge Crystallographic Database to contain solvent ethanol molecules the restraints C-C = 1.440(6), C-O = 1.419(6), C..O = 2.377(7) were derived. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.1507P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 866 _refine_ls_number_parameters 130 _refine_ls_number_restraints 17 _refine_ls_R_factor_all 0.1728 _refine_ls_R_factor_obs 0.0848 _refine_ls_wR_factor_all 0.2435 _refine_ls_wR_factor_obs 0.2028 _refine_ls_goodness_of_fit_all 0.945 _refine_ls_goodness_of_fit_obs 1.252 _refine_ls_restrained_S_all 0.945 _refine_ls_restrained_S_obs 1.236 _refine_ls_shift/esd_max 0.000 _refine_ls_shift/esd_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_thermal_displace_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_group Ni1 Ni 0.0000 0.2500 0.0682(2) 0.0664(14) Uani 1 d S . N1 N 0.0832(12) 0.1555(6) 0.0738(7) 0.075(4) Uani 1 d . . C1 C 0.1416(13) 0.1365(7) 0.1326(8) 0.055(5) Uani 1 d . . H1 H 0.1400 0.1682 0.1753 0.069 Uiso 1 calc . . C2 C 0.2054(12) 0.0765(7) 0.1412(8) 0.055(4) Uani 1 d . . H2 H 0.2423 0.0666 0.1883 0.069 Uiso 1 calc . . C3 C 0.2144(11) 0.0314(6) 0.0797(9) 0.057(4) Uani 1 d . . C4A C 0.1365(26) 0.0428(15) 0.0171(15) 0.052(6) Uiso 0.58(3) d P 1 H4A H 0.1287 0.0092 -0.0234 0.065 Uiso 0.58 calc P 1 C5A C 0.0757(26) 0.1035(15) 0.0193(16) 0.052(6) Uiso 0.58(3) d P 1 H5A H 0.0231 0.1105 -0.0207 0.066 Uiso 0.58 calc P 1 C4B C 0.1906(37) 0.0639(20) 0.0102(22) 0.052(6) Uiso 0.42(3) d P 2 H4B H 0.2239 0.0453 -0.0352 0.065 Uiso 0.42 calc P 2 C5B C 0.1220(37) 0.1209(19) 0.0039(25) 0.052(6) Uiso 0.42(3) d P 2 H5B H 0.0995 0.1380 -0.0451 0.066 Uiso 0.42 calc P 2 N2 N 0.0000 0.2500 -0.0498(7) 0.048(4) Uani 1 d S . C7 C 0.0903(14) 0.2702(8) -0.1681(8) 0.065(5) Uani 1 d . . H7 H 0.1541 0.2856 -0.1957 0.081 Uiso 1 calc . . C6 C 0.0926(13) 0.2692(8) -0.0896(8) 0.064(5) Uani 1 d . . H6 H 0.1586 0.2818 -0.0629 0.080 Uiso 1 calc . . C8 C 0.0000 0.2500 -0.2064(11) 0.055(5) Uani 1 d S . N3 N -0.1629(66) 0.1689(42) 0.1316(22) 0.128(8) Uiso 0.50 d PD 3 O1 O -0.1433(23) 0.2035(13) 0.0724(15) 0.078(5) Uiso 0.50 d PD 3 O2 O -0.2232(24) 0.1199(15) 0.1349(16) 0.125(8) Uiso 0.50 d PD 3 O3 O -0.1137(29) 0.1962(20) 0.1860(19) 0.132(8) Uiso 0.50 d PD 3 N4 N -0.1544(60) 0.1726(45) 0.1421(22) 0.128(8) Uiso 0.50 d PD 4 O4 O -0.1596(22) 0.1776(13) 0.0715(15) 0.078(5) Uiso 0.50 d PD 4 O5 O -0.2272(24) 0.1475(15) 0.1783(16) 0.125(8) Uiso 0.50 d PD 4 O6 O -0.0776(28) 0.2110(19) 0.1730(19) 0.132(8) Uiso 0.50 d PD 4 C11 C -0.0220(42) 0.4818(19) -0.2129(30) 0.149(15) Uiso 0.50 d PD . C12 C 0.0391(46) 0.4498(22) -0.2742(30) 0.149(15) Uiso 0.50 d PD . O11 O 0.1222(45) 0.4950(37) -0.3032(40) 0.232(27) Uiso 0.27(3) d PD . O12 O -0.0841(79) 0.4317(33) -0.1710(46) 0.232(27) Uiso 0.23(3) d PD . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Ni1 0.099(3) 0.060(2) 0.040(2) 0.000 0.000 0.051(2) N1 0.121(11) 0.067(8) 0.035(6) -0.006(8) -0.022(9) 0.038(8) C1 0.074(12) 0.042(8) 0.049(9) -0.029(8) 0.006(9) 0.028(8) C2 0.091(12) 0.035(7) 0.039(9) -0.016(8) -0.020(9) 0.025(8) C3 0.080(12) 0.034(7) 0.056(9) 0.008(8) 0.008(9) 0.023(8) N2 0.046(11) 0.058(9) 0.041(9) 0.000 0.000 0.028(12) C7 0.086(13) 0.072(13) 0.036(8) -0.005(8) 0.015(9) -0.016(11) C6 0.033(9) 0.095(15) 0.062(10) -0.007(9) -0.007(8) 0.004(10) C8 0.077(16) 0.041(11) 0.047(11) 0.000 0.000 -0.010(16) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Ni1 O1 1.95(3) . ? Ni1 O1 1.95(3) 8_455 ? Ni1 N1 2.055(12) 8_455 ? Ni1 N1 2.055(12) . ? Ni1 N2 2.076(13) . ? Ni1 O6 2.20(3) . ? Ni1 O6 2.20(3) 8_455 ? Ni1 O4 2.37(2) 8_455 ? Ni1 O4 2.37(2) . ? N1 C1 1.30(2) . ? N1 C5A 1.38(3) . ? N1 C5B 1.47(4) . ? C1 C2 1.38(2) . ? C1 H1 0.96 . ? C2 C3 1.38(2) . ? C2 H2 0.96 . ? C3 C4B 1.40(4) . ? C3 C4A 1.47(3) . ? C3 C3 1.47(2) 4 ? C4A C5A 1.36(3) . ? C4A H4A 0.96 . ? C5A H5A 0.96 . ? C4B C5B 1.37(4) . ? C4B H4B 0.96 . ? C5B H5B 0.96 . ? N2 C6 1.37(2) 8_455 ? N2 C6 1.37(2) . ? C7 C8 1.34(2) . ? C7 C6 1.38(2) . ? C7 H7 0.96 . ? C6 H6 0.96 . ? C8 C7 1.34(2) 8_455 ? C8 C8 1.53(4) 14 ? N3 O2 1.18(3) . ? N3 O3 1.24(3) . ? N3 O1 1.25(3) . ? N4 O5 1.19(4) . ? N4 O4 1.25(3) . ? N4 O6 1.30(3) . ? C11 O12 1.418(6) . ? C11 C12 1.441(6) . ? C12 O11 1.418(6) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O1 Ni1 N1 87.1(9) . 8_455 ? O1 Ni1 N1 92.7(9) 8_455 8_455 ? O1 Ni1 N1 92.7(9) . . ? O1 Ni1 N1 87.1(9) 8_455 . ? N1 Ni1 N1 174.5(8) 8_455 . ? O1 Ni1 N2 92.2(8) . . ? O1 Ni1 N2 92.2(8) 8_455 . ? N1 Ni1 N2 92.7(4) 8_455 . ? N1 Ni1 N2 92.7(4) . . ? O1 Ni1 O6 120.2(10) 8_455 . ? N1 Ni1 O6 92.3(11) 8_455 . ? N1 Ni1 O6 83.1(10) . . ? N2 Ni1 O6 147.0(8) . . ? O1 Ni1 O4 170.9(12) . 8_455 ? N1 Ni1 O6 83.1(10) 8_455 8_455 ? N1 Ni1 O6 92.3(11) . 8_455 ? N2 Ni1 O6 147.0(8) . 8_455 ? N1 Ni1 O4 84.3(8) 8_455 8_455 ? N1 Ni1 O4 95.6(8) . 8_455 ? N2 Ni1 O4 91.4(7) . 8_455 ? N1 Ni1 O4 95.6(8) 8_455 . ? N1 Ni1 O4 84.3(8) . . ? N2 Ni1 O4 91.4(7) . . ? O6 Ni1 O4 55.7(9) . . ? C1 N1 C5A 113.1(15) . . ? C1 N1 C5B 111.5(18) . . ? C1 N1 Ni1 123.0(10) . . ? C5A N1 Ni1 123.7(14) . . ? C5B N1 Ni1 120.3(17) . . ? N1 C1 C2 128.1(13) . . ? N1 C1 H1 116 . . ? C2 C1 H1 116 . . ? C3 C2 C1 117.8(13) . . ? C3 C2 H2 121 . . ? C1 C2 H2 121 . . ? C2 C3 C4B 113.4(17) . . ? C2 C3 C4A 116.4(15) . . ? C2 C3 C3 123.1(10) . 4 ? C4B C3 C3 118.4(16) . 4 ? C4A C3 C3 119.9(13) . 4 ? C5A C4A C3 116.9(22) . . ? C5A C4A H4A 122 . . ? C3 C4A H4A 122 . . ? C4A C5A N1 125.7(23) . . ? C4A C5A H5A 117 . . ? N1 C5A H5A 117 . . ? C5B C4B C3 122.8(33) . . ? C5B C4B H4B 119 . . ? C3 C4B H4B 119 . . ? C4B C5B N1 118.6(34) . . ? C4B C5B H5B 121 . . ? N1 C5B H5B 121 . . ? C6 N2 C6 118.8(15) 8_455 . ? C6 N2 Ni1 120.6(8) 8_455 . ? C6 N2 Ni1 120.6(8) . . ? C8 C7 C6 121.0(16) . . ? C8 C7 H7 120 . . ? C6 C7 H7 120 . . ? N2 C6 C7 119.7(14) . . ? N2 C6 H6 120 . . ? C7 C6 H6 120 . . ? C7 C8 C7 119.7(19) . 8_455 ? C7 C8 C8 120.1(9) . 14 ? C7 C8 C8 120.1(9) 8_455 14 ? O2 N3 O3 126.0(36) . . ? O2 N3 O1 124.5(36) . . ? O3 N3 O1 109.4(32) . . ? N3 O1 Ni1 115.8(29) . . ? O5 N4 O4 121.7(38) . . ? O5 N4 O6 122.2(38) . . ? O4 N4 O6 114.2(31) . . ? N4 O4 Ni1 91.5(21) . . ? N4 O6 Ni1 98.3(23) . . ? O12 C11 C12 112.5(8) . . ? O11 C12 C11 112.6(8) . . ? _refine_diff_density_max 0.412 _refine_diff_density_min -0.409 _refine_diff_density_rms 0.096 #===END data_Ni2(4,4'-bpy)3(NO3)4 _publ_contact_author ; Matthew J. Rosseinsky Inorganic Chemistry Laboratory University of Oxford South Parks Road Oxford OX1 3QR UK ; _publ_contact_author_phone '(44) 1865 272695' _publ_contact_author_fax '(44) 1865 272690' _publ_contact_author_email matthew.rosseinsky@chem.ox.ac.uk _publ_requested_journal 'Chem. Commun.' _publ_requested_coeditor_name ; Dr Adrian Kybett ; loop_ _publ_author_name _publ_author_address 'Kepert, Cameron J.' ; Inorganic Chemistry Laboratory University of Oxford South Parks Road Oxford OX1 3QR UK (Present address: School of Chemistry, University of Sydney, NSW 2006, Australia.) ; 'Rosseinsky, Matthew J.' ; Inorganic Chemistry Laboratory University of Oxford South Parks Road Oxford OX1 3QR UK ; _audit_creation_method SHELXL _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_formula_moiety 'C15 H12 N5 Ni O6' _chemical_formula_structural ? _chemical_formula_analytical ? _chemical_formula_sum 'C15 H12 N5 Ni O6' _chemical_formula_weight 417.01 _chemical_melting_point ? _chemical_compound_source ? loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'Ni' 'Ni' 0.3393 1.1124 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M Ccca _symmetry_Int_Tables_number 68 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y, z+1/2' 'x, -y, z+1/2' '-x+1/2, -y, z' 'x+1/2, y+1/2, z' '-x+1, y+1/2, z+1/2' 'x+1/2, -y+1/2, z+1/2' '-x+1, -y+1/2, z' '-x, -y, -z' 'x-1/2, -y, -z-1/2' '-x, y, -z-1/2' 'x-1/2, y, -z' '-x+1/2, -y+1/2, -z' 'x, -y+1/2, -z-1/2' '-x+1/2, y+1/2, -z-1/2' 'x, y+1/2, -z' _cell_length_a 11.883(1) _cell_length_b 19.049(1) _cell_length_c 17.415(1) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 3942.0(5) _cell_formula_units_Z 8 _cell_measurement_temperature 375(2) _cell_measurement_reflns_used 6655 _cell_measurement_theta_min 2.33 _cell_measurement_theta_max 26.55 _exptl_crystal_description 'transparent blocks' _exptl_crystal_colour blue _exptl_crystal_size_max 0.45 _exptl_crystal_size_mid 0.40 _exptl_crystal_size_min 0.32 _exptl_crystal_density_method 'not measured' _exptl_crystal_density_diffrn 1.405 _exptl_crystal_F_000 1704 _exptl_absorpt_coefficient_mu 1.023 _exptl_absorpt_correction_type none _exptl_absorpt_correction_T_min 1.0 _exptl_absorpt_correction_T_max 1.0 _exptl_special_details ; ? ; _diffrn_ambient_environment 'In an open 0.5 mm Lindemann tube' _diffrn_crystal_treatment ; A single crystal of [Ni(bpy)1.5(NO3)2].(EtOH) was warmed to 375 K (the desolvation temperature) at 20 K/hr. The crystal lay inside an open-ended capillary, itself immersed in a variable temperature dry nitrogen stream, throughout the experiment. ; _diffrn_ambient_temperature 375(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device 'Enraf-Nonius DIP2000 diffractometer' _diffrn_detector 'Eu/Ba image plate' _diffrn_measurement_method 'Ninety 2-degree oscillations in phi' _diffrn_standards_decay_% 0 _diffrn_reflns_number 14645 _diffrn_reflns_av_R_equivalents 0.039 _diffrn_reflns_av_sigmaI/netI 0.0217 _diffrn_reflns_limit_h_min -13 _diffrn_reflns_limit_h_max 13 _diffrn_reflns_limit_k_min -23 _diffrn_reflns_limit_k_max 23 _diffrn_reflns_limit_l_min -21 _diffrn_reflns_limit_l_max 21 _diffrn_reflns_theta_min 2.33 _diffrn_reflns_theta_max 26.55 _reflns_number_total 1958 _reflns_number_observed 1480 _reflns_observed_criterion >2sigma(I) _computing_data_collection 'XPRESS (MAC Science, 1989)' _computing_cell_refinement 'HKL (Otwinowski & Minor, 1996)' _computing_data_reduction 'HKL (Otwinowski & Minor, 1996)' _computing_structure_solution 'SHELXS-86 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-93 (Sheldrick, 1993)' _computing_molecular_graphics 'XPMA/ZORTEP' _computing_publication_material 'CIFTAB' _refine_special_details ; Refinement on F^2^ for ALL reflections except for 1 with very negative F^2^ or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The observed criterion of F^2^ > 2sigma(F^2^) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The three largest peaks in the difference Fourier map are in the vicinity of the nitrate anion and would seem to result from a small amount of disorder in this unit. Attempted refinement of this disorder by splitting the nitrate anion into two isotropic, partially-occupied orientations (as was necessary for the room temperature structure of the solvated, parent material) failed to produce a sensible model, and led to an increase in the refinement indices. All other positive difference peaks are comparable in magnitude to the negative difference peaks. There is no evidence for electron density within the channels: refinement of the structural model with the SQUEEZE routine within PLATON suggested a cavity electron population of only 0.8 e- per formula unit (compared to 24.6 e- for the parent solvated structure). ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme 'calc w=1/[\s^2^(Fo^2^)+(0.1275P)^2^+4.7945P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary isomor _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 1957 _refine_ls_number_parameters 124 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0819 _refine_ls_R_factor_obs 0.0676 _refine_ls_wR_factor_all 0.2210 _refine_ls_wR_factor_obs 0.2085 _refine_ls_goodness_of_fit_all 1.105 _refine_ls_goodness_of_fit_obs 1.211 _refine_ls_restrained_S_all 1.108 _refine_ls_restrained_S_obs 1.211 _refine_ls_shift/esd_max 0.000 _refine_ls_shift/esd_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_thermal_displace_type _atom_site_occupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_group Ni1 Ni 0.0000 0.2500 0.07108(4) 0.0877(5) Uani 1 d S . N1 N 0.0871(4) 0.1553(2) 0.0776(2) 0.091(2) Uani 1 d . . C1 C 0.1340(4) 0.1335(2) 0.1420(2) 0.0729(13) Uani 1 d . . H1 H 0.1229 0.1609 0.1877 0.091 Uiso 1 calc . . C2 C 0.1979(4) 0.0737(2) 0.1470(2) 0.0705(12) Uani 1 d . . H2 H 0.2316 0.0610 0.1952 0.088 Uiso 1 calc . . C3 C 0.2141(4) 0.0321(2) 0.0842(2) 0.0693(12) Uani 1 d . . C4 C 0.1618(7) 0.0527(3) 0.0181(3) 0.128(3) Uani 1 d . . H4 H 0.1692 0.0249 -0.0276 0.160 Uiso 1 calc . . C5 C 0.0988(8) 0.1129(4) 0.0168(3) 0.148(4) Uani 1 d . . H5 H 0.0612 0.1253 -0.0301 0.185 Uiso 1 calc . . N2 N 0.0000 0.2500 -0.0478(3) 0.0660(14) Uani 1 d S . C6 C 0.0889(4) 0.2709(3) -0.0872(3) 0.0823(14) Uani 1 d . . H6 H 0.1543 0.2863 -0.0596 0.103 Uiso 1 calc . . C7 C 0.0916(4) 0.2715(3) -0.1667(3) 0.0819(14) Uani 1 d . . H7 H 0.1580 0.2870 -0.1931 0.102 Uiso 1 calc . . C8 C 0.0000 0.2500 -0.2073(3) 0.0596(14) Uani 1 d S . N3 N -0.1691(6) 0.1690(4) 0.1342(4) 0.118(2) Uani 1 d . . O1 O -0.1529(5) 0.1916(4) 0.0731(3) 0.157(3) Uani 1 d . . O2 O -0.2363(6) 0.1342(4) 0.1626(3) 0.158(2) Uani 1 d . . O3 O -0.1037(6) 0.2040(3) 0.1787(4) 0.148(2) Uani 1 d . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Ni1 0.1406(10) 0.0775(7) 0.0450(5) 0.000 0.000 0.0735(6) N1 0.141(4) 0.076(3) 0.055(2) -0.006(2) -0.007(2) 0.073(3) C1 0.107(3) 0.059(2) 0.052(2) -0.008(2) -0.005(2) 0.039(2) C2 0.094(3) 0.060(2) 0.058(2) -0.003(2) -0.009(2) 0.033(2) C3 0.095(3) 0.056(2) 0.057(2) 0.002(2) -0.001(2) 0.036(2) C4 0.219(8) 0.102(4) 0.063(3) -0.013(3) -0.016(4) 0.106(5) C5 0.256(9) 0.129(5) 0.059(3) -0.024(3) -0.038(4) 0.139(6) N2 0.083(3) 0.067(3) 0.048(3) 0.000 0.000 0.038(3) C6 0.079(3) 0.113(4) 0.055(3) -0.014(3) -0.006(2) 0.011(3) C7 0.075(3) 0.116(4) 0.055(3) -0.010(2) 0.000(2) -0.005(3) C8 0.069(4) 0.065(3) 0.045(3) 0.000 0.000 0.008(2) N3 0.118(5) 0.127(5) 0.109(5) 0.044(4) -0.014(4) 0.014(4) O1 0.160(5) 0.201(6) 0.111(4) 0.082(4) 0.052(3) 0.092(4) O2 0.178(6) 0.160(6) 0.137(4) 0.058(4) 0.021(4) -0.022(4) O3 0.178(6) 0.107(4) 0.161(5) -0.003(4) 0.025(4) 0.039(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Ni1 N2 2.070(5) . ? Ni1 N1 2.082(3) . ? Ni1 N1 2.082(3) 8_455 ? Ni1 O1 2.131(7) 8_455 ? Ni1 O1 2.131(7) . ? Ni1 O3 2.408(6) . ? Ni1 O3 2.408(6) 8_455 ? N1 C1 1.320(5) . ? N1 C5 1.340(6) . ? C1 C2 1.373(5) . ? C1 H1 0.96 . ? C2 C3 1.364(6) . ? C2 H2 0.96 . ? C3 C4 1.367(6) . ? C3 C3 1.492(7) 4 ? C4 C5 1.369(7) . ? C4 H4 0.96 . ? C5 H5 0.96 . ? N2 C6 1.321(6) 8_455 ? N2 C6 1.321(6) . ? C6 C7 1.384(7) . ? C6 H6 0.96 . ? C7 C8 1.362(6) . ? C7 H7 0.96 . ? C8 C7 1.362(6) 8_455 ? C8 C8 1.485(11) 14 ? N3 O2 1.149(8) . ? N3 O1 1.165(7) . ? N3 O3 1.283(8) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N2 Ni1 N1 93.14(10) . . ? N2 Ni1 N1 93.14(10) . 8_455 ? N1 Ni1 N1 173.7(2) . 8_455 ? N2 Ni1 O1 90.96(14) . 8_455 ? N1 Ni1 O1 91.6(2) . 8_455 ? N1 Ni1 O1 88.3(2) 8_455 8_455 ? N2 Ni1 O1 90.96(14) . . ? N1 Ni1 O1 88.3(2) . . ? N1 Ni1 O1 91.6(2) 8_455 . ? O1 Ni1 O1 178.1(3) 8_455 . ? N2 Ni1 O3 141.1(2) . . ? N1 Ni1 O3 84.1(2) . . ? N1 Ni1 O3 91.1(2) 8_455 . ? O1 Ni1 O3 127.8(3) 8_455 . ? O1 Ni1 O3 50.2(2) . . ? N2 Ni1 O3 141.1(2) . 8_455 ? N1 Ni1 O3 91.1(2) . 8_455 ? N1 Ni1 O3 84.1(2) 8_455 8_455 ? O1 Ni1 O3 50.2(2) 8_455 8_455 ? O1 Ni1 O3 127.8(3) . 8_455 ? O3 Ni1 O3 77.8(4) . 8_455 ? C1 N1 C5 116.0(4) . . ? C1 N1 Ni1 122.0(3) . . ? C5 N1 Ni1 122.1(3) . . ? N1 C1 C2 123.3(4) . . ? N1 C1 H1 118 . . ? C2 C1 H1 118 . . ? C3 C2 C1 120.6(4) . . ? C3 C2 H2 120 . . ? C1 C2 H2 120 . . ? C2 C3 C4 116.5(4) . . ? C2 C3 C3 123.8(3) . 4 ? C4 C3 C3 119.7(3) . 4 ? C3 C4 C5 120.2(5) . . ? C3 C4 H4 120 . . ? C5 C4 H4 120 . . ? N1 C5 C4 123.3(5) . . ? N1 C5 H5 118 . . ? C4 C5 H5 118 . . ? C6 N2 C6 117.3(6) 8_455 . ? C6 N2 Ni1 121.3(3) 8_455 . ? C6 N2 Ni1 121.3(3) . . ? N2 C6 C7 122.7(5) . . ? N2 C6 H6 119 . . ? C7 C6 H6 119 . . ? C8 C7 C6 119.9(5) . . ? C8 C7 H7 120) . . ? C6 C7 H7 120 . . ? C7 C8 C7 117.3(6) . 8_455 ? C7 C8 C8 121.4(3) . 14 ? C7 C8 C8 121.4(3) 8_455 14 ? O2 N3 O1 136.1(9) . . ? O2 N3 O3 117.5(7) . . ? O1 N3 O3 105.0(8) . . ? N3 O1 Ni1 110.4(6) . . ? N3 O3 Ni1 91.7(5) . . ? _refine_diff_density_max 0.882 _refine_diff_density_min -0.487 _refine_diff_density_rms 0.072 #===END