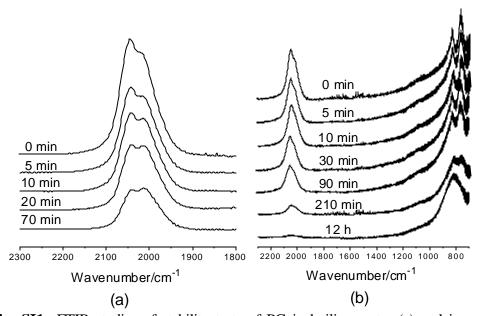
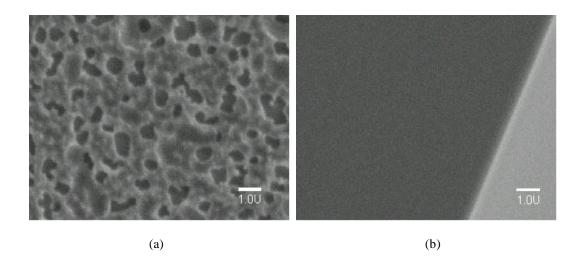
Supplementary information

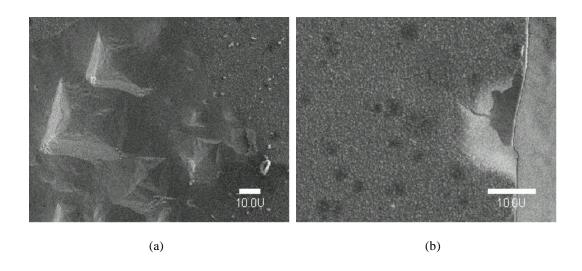
Preparation and functionalization of hydride terminated porous germanium


Hee Cheul Choi and Jillian M. Buriak*

Department of Chemistry, 1393 Brown Laboratories, Purdue University, West Lafayette, IN 47907-1393


E-mail: buriak@purdue.edu

Thermal stability


The native Ge- H_x terminated surface is surprisingly resistant to boiling aqueous conditions, in light of the known instability of Ge- H_x groups on flat surfaces under ambient conditions. PG was immersed in aerated boiling water, with or without 25% v/v of ethanol for 5, 10, 20, and 70 min which resulted in a ~50% decrease of total Ge- H_x intensities (Fig. SI1a). Thermal oxidation in air at 100 $^{\circ}$ C also showed little effect after 1 h, but after 12 h, the Ge- H_x vibrations are essentially removed (Fig SI1b).

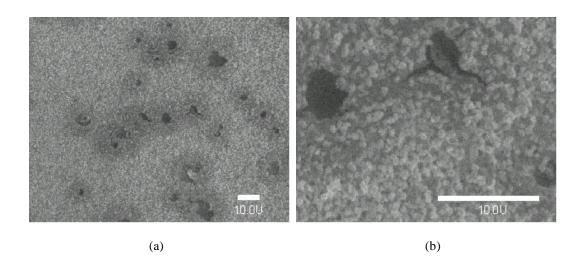

Fig. SI1 FTIR studies of stability tests of PG in boiling water (a) and in oven at 100 °C (b).

Fig. SI2 SEM of the surface features of n⁺ type germanium after (a) 2 min and (b) 5 min anodization under 350 mA/cm². Oxide layer formed during first 2 min of anodization dissolved during next 3 min of anodization. Diagonally fractured top surface was included in (b) in order to compare the cleanliness of the top surface.

 $\textbf{Fig. SI3} \hspace{0.2cm} \textbf{SEM (plan view) of } n^{^{+}} \hspace{0.2cm} \textbf{type PG.} \hspace{0.2cm} \textbf{Pyramidal shape surface features (a) and nanoparticles (b) are shown.}$

Fig. SI4 SEM of the plan view of p type PG. Submicron-sized particles were found around the edge of the sample. Fractured areas and nanoparticles are seen under lower (a) and higher magnification (b).

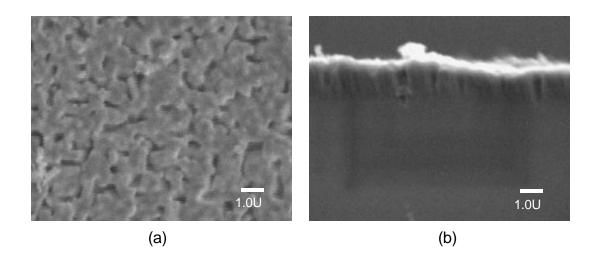


Fig. SI5 Plan and cross-sectional view of (a and (b) p type derived PG.