Supporting Information

A Novel Intramolecular Through-Space Interaction between F and CN: A Strategy for the Conformational Control of an Acyclic System

Kiyoharu Nishide,^{*,a} Yuri Hagimoto,^a Hiroaki Hasegawa,^a Motoo Shiro,^b and Manabu Node^{*,a}

^aDepartment of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University,
 Misasagi, Yamashina, Kyoto 607-8414, Japan. Fax: +81-75-595-4775; Fel: +81-75-595-4639; E-mail: node@mb.kyoto-phu.ac.jp
 ^bRigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo 196-0003, Japan

General. Melting points were taken on a micro hot-stage apparatus (Yanagimoto) and were uncorrected. Infrared (IR) spectra were recorded on a JASCO IR-810 diffraction grating infrared spectrophotometer and ¹H-NMR spectra were obtained on a Varian XL-300 or a Varian INOVA 400NB NMR spectrometer with tetramethylsilane as an internal standard. Mass spectra (MS) were determined on a JEOL JMS-SX 102A QQ or a JEOL JMS-GC-mate mass spectrometer. Combustion analysis was done on a Perkin Elmer Series II CHNS/O Analyzer 2400. Specific rotations were recorded on a Horiba SEPA-200 automatic digital polarimeter. Wakogel C-200 (silica gel) (100-200 mesh, Wako) was used for open column chromatography. Flash column chromatography was performed with Silica Gel 60N (Kanto Chemical) or Silica Gel 60H (Nakalai Tesque). Kieselgel 60 F-254 plates (Merck) were used for thin layer chromatography (TLC). When necessary, compounds were further purified by a recycle HPLC (LC-908, Japan Analytical Industry Co., Ltd.) on GPC columns (JAIGEL 1H and 2H) after purification on silica gel.

Materials. Toluene, ether, and tetrahydrofuran (THF) were distilled from sodium benzophenone ketyl, and dichloromethane was distilled from CaH_2 , after ten washings with water to remove methanol contaminants. Most of the reagents were obtained from Wako Pure Chemical Industries, Ltd., Nacalai Tesque, Inc., Kanto Chemical Co., Inc., or Aldrich Chemical Inc. (*R*)-Epoxyoctane was available from the Japan Energy Corporation.

Synthesis of *syn*- and *anti*-4-Fluoro-2-(4-hydroxyphenyl)decanenitrile (1)

(2S, 4R)- and (2R, 4R)-4-Hydroxy-2-(4-methoxyphenyl)decanenitrile (anti- and syn-3)

To a THF (5 ml) solution of 4-methoxyphenylacetonitrile (750 mg, 5.10 mmol) was added dropwise *n*-BuLi (2.52 M in hexane, 2.43 ml, 6.12 mmol) at -78° C under a nitrogen atmosphere. After stirring for 1 h, a THF (3 ml) solution of (*R*)-epoxyoctane (719 mg, 5.61 mmol) and additional THF (6 ml) were added dropwise to the reaction mixture, which was warmed up to -10° C and stirred again for 2.5 h. The reaction mixture was poured into a separating funnel replaced with 1*N* hydrochloric acid (10 ml) and crushed ice, adjusted with 1*N* sodium bicarbonate to pH 6, and extracted with ethyl acetate. The extract was washed with brine, dried (MgSO4), filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (hexane / ethyl acetate = 5 / 1) to give (4*R*)-4-hydroxy-2-(4-methoxyphenyl)decanenitriles (*anti* and *syn* = 1.6 : 1) (1.126 g, 80% yield). The diastereomeric mixture (850 mg) was further purified by a recycle HPLC with Kusano pre-packed column Si-10 (hexane / ethyl acetate = 4 / 1, flow rate 9.85 ml / min, pressure 10 kgf / cm²) to give pure (2*S*, 4*R*)-4-hydroxy-2-(4-methoxyphenyl)decanenitrile (*anti*-3) (503 mg) and (2*R*, 4*R*)-4-hydroxy-2-(4-methoxyphenyl)decanenitrile (*syn*-3) (247 mg).

anti-3: yellowish oil; $[\alpha]_D^{26} = -27.7$ (2.50, MeOH); ¹H-NMR (400 MHz, CDCl₃) δ : 7.27 (AA'XX', J = 8.7 Hz, 2H), 6.90 (AA'XX', J = 8.7 Hz, 2H), 4.14 (dd, J = 11.5 and 4.4 Hz, 1H), 3.95 (m, 1H), 3.80 (s, 3H), 2.07 (br, 1H), 1.98 (dd, A part of

AB, $J_{AB} = 13.9$ Hz, J = 11.5 and 2.4 Hz, 1H), 1.80 (dd, B part of AB, $J_{AB} = 13.9$ Hz, J = 10.6 and 4.4 Hz, 1H), 1.52-1.41 (m, 2H), 1.40-1.24 (m, 8H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ : 159.2, 128.2, 128.1, 121.1, 114.4, 69.2, 55.3, 43.5, 37.8, 33.5, 31.7, 29.1, 25.3, 22.5, 14.0; IR (CHCl₃): 3620, 3489, 2959, 2932, 2858, 2241, 1612, 1514, 1466, 1254, 1180, 1036, 831 cm⁻¹; MS EI (20 eV) m/z: 275 (M⁺, 12), 257 (22), 231 (5), 159 (100), 147 (46), 134 (10), 121 (9), 108 (15); HRMS calcd for C₁₇H₂₅NO₂ (M⁺): 275.1885, found: 275.1883; ^tR 60 min. [Kusano Pre-packed Column Silica Gel (Si-10, ϕ 22 x 300 mm); elute: hexane / ethyl acetate = 4 / 1 ; flow rate: 9.85 ml / min.; pressure: 10 kgf / cm²; detector: UV 254 nm and RI].

syn-3: yellowish oil; $[\alpha]_D^{16} = -21.8$ (2.03, MeOH); ¹H-NMR (400 MHz, CDCl₃) δ : 7.27 (AA'XX', J = 8.7 Hz, 2H), 6.90 (AA'XX', J = 8.7 Hz, 2H), 4.02 (dd, J = 10.0 and 5.3 Hz, 1H), 3.81 (s, 3H), 3.39 (m, 1H), 2.08 (dd, A part of AB, $J_{AB} = 13.7$ Hz, J = 9.7 and 5.3 Hz, 1H), 1.96 (dd, B part of AB, $J_{AB} = 13.7$ Hz, J = 10.0 and 3.3 Hz, 1H), 1.46-1.24 (m, 10H), 0.86 (t, J = 6.9 Hz, 3H), (OH was not observed); ¹³C-NMR (100 MHz, CDCl₃) δ : 159.3, 128.8, 127.2, 121.9, 114.4, 68.0, 55.3, 42.6, 37.6, 32.5, 31.6, 29.1, 25.3, 22.5, 14.0; IR (CHCl₃): 3622, 3495, 2957, 2932, 2858, 2241, 1612, 1514, 1466, 1252, 1180, 1036, 831 cm⁻¹; MS EI (20 eV) *m*/*z*: 275 (M⁺, 18), 257 (20), 231 (9), 164 (24), 159 (100), 147 (65), 134 (17), 121 (17), 108 (25); HRMS calcd for C₁₇H₂₅NO₂ (M⁺): 275.1885, found: 275.1880; ^tR 75 min. [Kusano Pre-packed Column Silica Gel (Si-10, ϕ 22 x 300 mm); elute: hexane / ethyl acetate = 4 / 1 ; flow rate: 9.85 ml / min.; pressure: 10 kgf / cm²; detector: UV 254 nm and RI].

(2S, 4R)-4-Acetoxy-2-(4-methoxyphenyl)decanenitrile (anti-4)

A mixture of (2*S*, 4*R*)-4-hydroxy-2-(4-methoxyphenyl)decanenitrile (*anti*-**3**) (291 mg, 1.06 mmol) and acetic anhydride (1.62 g, 15.91 mmol) and pyridine (1.47 g, 18.54 mmol) was stirred for 17.5 h at room temperature. The reaction mixture was concentrated *in vacuo*, and the residue was purified by column chromatography (hexane / ethyl acetate = 8 / 1) to give (2*S*, 4*R*)-4-acetoxy-2-(4-methoxyphenyl)decanenitrile (*anti*-**4**) (301 mg, 90% yield). mp 38.7-39.1 °C (hexane); $[\alpha]_D^{22} = -7.58$ (1.93, MeOH); ¹H-NMR (300 MHz, CDCl₃) δ : 7.24 (AA'XX', *J* = 8.7 Hz, 2H), 6.90 (AA'XX', *J* = 8.7 Hz, 2H), 5.03 (m, 1H), 3.83 (dd, *J* = 9.7 and 5.3 Hz, 1H), 3.81 (s, 3H), 2.19-2.00 (m, 5H), 1.72-1.47 (m, 2H), 1.37-1.16 (m, 8H), 0.87 (t, *J* = 6.7 Hz, 3H); IR (CHCl₃): 2959, 2932, 2860, 2243, 1734, 1612, 1514, 1466, 1375, 1252, 1238, 1180, 1034, 831 cm⁻¹; MS FAB(+) *m/z*: 318 [(M+H)⁺]; HRMS calcd for C₁9H₂₈NO₃ [(M+H)⁺]: 318.2070, found: 318.2078; Anal. Calcd for C₁9H₂₇NO₃: C, 71.89; H, 8.57; N, 4.41. Found : C, 71.80; H, 8.57; N, 4.61.

(2R, 4R)-4-Acetoxy-2-(4-methoxyphenyl)decanenitrile (syn-4)

A mixture of (2R, 4R)-4-hydroxy-2-(4-methoxyphenyl)decanenitrile (*syn*-**3**) (202 mg, 0.73 mmol), acetic anhydride (1.08 g, 10.60 mmol), and pyridine (978 mg, 12.36 mmol) was stirred for 18 h at room temperature. The reaction mixture was concentrated *in vacuo*, and the residue was purified by column chromatography (hexane / ethyl acetate = 8 / 1) to give (2R, 4R)-4-acetoxy-2-(4-methoxyphenyl)decanenitrile (*syn*-**4**) (229 mg, 98% yield). yellowish oil: $[\alpha]_D^{21} = -0.06$ (2.22, MeOH); ¹H-NMR (300 MHz, CDCl₃) δ : 7.21 (AA'XX', *J* = 8.8 Hz, 2H), 6.90 (AA'XX', *J* = 8.8 Hz, 2H), 4.83 (m, 1H), 3.81 (s, 3H), 3.74 (t, *J* = 7.4 Hz, 1H),

2.28 (dd, A part of AB, $J_{AB} = 14.4$ Hz, J = 9.5 and 7.4 Hz, 1H), 2.09 (s, 3H), 2.00 (dd, B part of AB, $J_{AB} = 14.4$ Hz, J = 7.4 and 3.0 Hz, 1H), 1.61-1.45 (m, 2H), 1.29-1.18 (m, 8H), 0.86 (t, J = 6.7 Hz, 3H); IR (CHCl₃): 2959, 2932, 2860, 2243, 1732, 1612, 1514, 1466, 1375, 1250, 1238, 1180, 1034, 831 cm⁻¹; MS FAB(+) m/z: 318 [(M+H)⁺]; HRMS calcd for C₁₉H₂₈NO₃ [(M+H)⁺]: 318.2070, found: 318.2078.

(2S, 4R)-4-Acetoxy-2-(4-hydroxyphenyl)decanenitrile (anti-5)

Aluminum chloride (648 mg, 4.86 mmol) was added to dimethyl sulfide (10 ml) at 0 °C under a nitrogen atmosphere,¹⁵ followed by the addition of a dichloromethane (1 ml) solution of (2*S*, 4*R*)-4-acetoxy-2-(4-methoxyphenyl)decanenitrile (*anti*-4) (257 mg, 0.81 mmol). After stirring for 18 h at room temperature, the reaction mixture was poured into water, and extracted with chloroform. The extract was washed with brine, dried (MgSO4), filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (hexane / ethyl acetate = 4 / 1) to give (2*S*, 4*R*)-4-acetoxy-2-(4-hydroxyphenyl)decanenitrile (*anti*-5) (231 mg, 94% yield). yellowish oil; $[\alpha]_D^{26} = -7.96$ (1.98, MeOH); ¹H-NMR (300 MHz, CDCl₃) δ : 7.19 (AA'XX', *J* = 8.5 Hz, 2H), 6.84 (AA'XX', *J* = 8.5 Hz, 2H), 5.27 (br, 1H), 5.02 (m, 1H), 3.83 (dd, *J* = 9.2 and 5.5 Hz, 1H), 2.19-2.00 (m, 5H), 1.70-1.48 (m, 2H), 1.36-1.15 (m, 8H), 0.87 (t, *J* = 6.7 Hz, 3H); IR (CHCl₃): 3595, 3312, 2959, 2932, 2860, 2243, 1734, 1616, 1516, 1458, 1439, 1375, 1240, 1175, 1032, 833 cm⁻¹; MS FAB(+) *m/z*: 304 [(M+H)⁺]; HRMS calcd for C₁₈H₂₆NO₃ [(M+H)⁺]: 304.1912, found: 304.1919.

(2R, 4R)-4-Acetoxy-2-(4-hydroxyphenyl)decanenitrile (syn-5)

Aluminum chloride (479 mg, 3.59 mmol) was added to dimethyl sulfide (10 ml) at 0 °C under a nitrogen atmosphere,¹⁵ followed by the addition of a dichloromethane (1 ml) solution of (2*R*, 4*R*)-4-acetoxy-2-(4-methoxyphenyl)decanenitrile (*syn*-4) (190 mg, 0.60 mmol). After stirring for 28 h at room temperature, the reaction mixture was poured into water, and extracted with chloroform. The extract was washed with brine, dried (MgSO4), filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (hexane / ethyl acetate = 4 / 1) to give (2*R*, 4*R*)-4-acetoxy-2-(4-hydroxyphenyl)decanenitrile (*syn*-5) (179 mg, 98% yield). colorless oil; $[\alpha]_D^{21} = +1.00$ (2.39, MeOH); ¹H-NMR (300 MHz, CDCl₃) δ : 7.15 (AA'XX', *J* = 8.7 Hz, 2H), 6.83 (AA'XX', *J* = 8.7 Hz, 2H), 5.37 (br, 1H), 4.83 (m, 1H), 3.72 (t, *J* = 7.4 Hz, 1H), 2.28 (dd, A part of AB, *J*_{AB} = 14.4 Hz, *J* = 9.6 and 7.4 Hz, 1H), 2.10 (s, 3H), 2.01 (dd, B part of AB, *J*_{AB} = 14.4 Hz, *J* = 7.4 and 3.0 Hz, 1H), 1.60-1.43 (m, 2H), 1.32-1.14 (m, 8H), 0.86 (t, *J* = 6.7 Hz, 3H); IR (CHCl₃): 3595, 3312, 2959, 2932, 2860, 2243, 1732, 1614, 1516, 1456, 1439, 1375, 1238, 1175, 1036, 833 cm⁻¹; MS FAB(+) *m*/*z*: 304 [(M+H)⁺]; HRMS calcd for C₁₈H₂₆NO₃ [(M+H)⁺]: 304.1913, found: 304.1920.

(2S, 4R)-4-Hydroxy-2-(4-hydroxyphenyl)decanenitrile (anti-6)

To an ether (10 ml) suspension of lithium borohydride (73 mg, 3.35 mmol) were added an ether (2 ml) solution of (2*S*, 4*R*)-4-acetoxy-2-(4-hydroxyphenyl)decanenitrile (*anti*-**5**) (185 mg, 0.61 mmol) and additional ether (5 ml) at 0 °C. Toluene (10 ml) was then added to the reaction mixture, which was refluxed at 95 °C for 3 h. After the reaction mixture was cooled to room temperature, lithium borohydride (27 mg, 1.22 mmol) was added, and the mixture was refluxed at 95 °C for an additional 1.5 h. The reaction mixture was poured into ice-water (salting-out), neutralized with 1*N*-hydrochloric acid to pH 7, then extracted with ethyl acetate. The extract was washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (hexane / ethyl acetate = 3 / 1) to give (2*S*, 4*R*)-4-hydroxy-2-(4-hydroxyphenyl)decanenitrile (*anti*-6) (99 mg, 62% yield). colorless oil; $[\alpha]_D^{20} = -29.7$ (1.63, MeOH); ¹H-NMR (300 MHz, CDCl₃) δ : 7.22 (AA'XX', *J* = 8.6 Hz, 2H), 6.83 (AA'XX', *J* = 8.6 Hz, 2H), 4.97 (br, 1H), 4.12 (dd, *J* = 11.5 and 4.5 Hz, 1H), 3.95 (m, 1H), 1.98 (dd, A part of AB, *J*_{AB} = 14.0 Hz, *J* = 11.5 and 2.5 Hz, 1H), 1.80 (dd, B part of AB, *J*_{AB} = 14.0 Hz, *J* = 10.5 and 4.5 Hz, 1H), 1.50-1.21 (m, 10H), 0.88 (t, *J* = 6.7 Hz, 3H), (an alcoholic proton was not observed); IR (CHCl₃): 3597, 3319, 2959, 2930, 2858, 2241, 1614, 1516, 1456, 1439, 1263, 1175, 1040, 833 cm⁻¹; MS EI (20 eV) *m/z*: 261 (M⁺, 4), 243 (18), 160 (9), 146 (14), 145 (100), 133 (30), 120 (6), 69 (7); HRMS calcd for C₁₆H₂₃NO₂ (M⁺): 261.1729, found: 261.1744

(2R, 4R)-4-Hydroxy-2-(4-hydroxyphenyl)decanenitrile (syn-6)

To an ether (10 ml) suspension of lithium borohydride (58 mg, 2.68 mmol) were added an ether (1 ml) solution of (2*R*, 4*R*)-4-acetoxy-2-(4-hydroxyphenyl)decanenitrile (*syn*-**5**) (148 mg, 0.49 mmol) and additional ether (5 ml) at 0 °C. Toluene (10 ml) was then added to the reaction mixture, which was refluxed at 95 °C for 1 h. After the reaction mixture was cooled to the room temperature, lithium borohydride (22 mg, 0.98 mmol) was added, and the mixture was refluxed for at 95 °C additional 2 h. The reaction mixture was poured into ice-water (salting-out), neutralized with 1*N*-hydrochloric acid to pH 7, and extracted with ethyl acetate. The extract was washed with brine, dried (MgSO4), filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (hexane / ethyl acetate = 3 / 1) to give (2*R*, 4*R*)-4-hydroxy-2-(4-hydroxyphenyl)decanenitrile (*syn*-**6**) (78 mg, 61% yield). colorless oil; $[\alpha]_D^{26} = -22.0$ (2.11, MeOH); ¹H-NMR (300 MHz, CDCl₃) δ : 7.23 (AA'XX', *J* = 8.6 Hz, 2H), 6.83 (AA'XX', *J* = 8.6 Hz, 2H), 4.88 (br, 1H), 4.01 (dd, *J* = 10.1 and 5.3 Hz, 1H), 3.38 (m, 1H), 2.08 (dd, A part of AB, *J*_{AB} = 13.7 Hz, *J* = 9.6 and 5.3 Hz, 1H), 1.95 (dd, B part of AB, *J*_{AB} = 13.7 Hz, *J* = 10.1 and 3.2 Hz, 1H), 1.48-1.17 (m, 10H), 0.86 (t, *J* = 6.8 Hz, 3H), (an alcoholic proton was not observed); IR (CHCl₃): 3595, 3329, 2957, 2930, 2858, 2241, 1614, 1516, 1456, 1441, 1263, 1175, 833 cm⁻¹; MS EI (20 eV) *m/z*: 261 (M⁺, 3), 243 (17), 160 (8), 146 (13), 145 (100), 133 (12), 120 (3), 69 (4); HRMS calcd for C₁₆H₂₃NO₂ (M⁺): 261.1729, found: 261.1723.

(2S, 4S)-4-Fluoro-2-(4-hydroxyphenyl)decanenitrile (syn-1)

To a dichloromethane (4 ml) solution of (2*S*, 4*R*)-4-hydroxy-2-(4-hydroxyphenyl)decanenitrile (*anti*-**6**) (53 mg, 0.20 mmol) was added dropwise a dichloromethane (0.5 ml) solution of (diethylamino)sulfur trifluoride (DAST)¹⁶ (82 mg, 0.51 mmol) at -78 °C under a nitrogen atmosphere, and the reaction mixture was stirred for 2 h. Water was added to the reaction mixture, and the solution was neutralized with 1*N*-sodium bicarbonate, then extracted with chloroform. The extract was washed with brine, dried (MgSO₄), filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (hexane / ethyl acetate = 4 / 1) to give a mixture of the product and olefin. To a THF (3 ml) solution of the obtained mixture and 4-methylmorpholine *N*-oxide

(NMO) (10 mg, 0.085 mmol) was added a water (2 ml) solution of osmium(VIII) oxide (1 mg) at room temperature, and the reaction mixture was stirred for 22 h. The reaction mixture was quenched with 20% sodium bisulfite solution, then extracted with ethyl acetate. The extract was washed with brine, dried (MgSO4), filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (hexane / ethyl acetate = 5 / 1) to give (2*S*, 4*S*)-4-fluoro-2-(4-hydroxyphenyl)decanenitrile (*syn*-1) (22 mg, 2 steps 42%). Colorless needles; mp 69.5-70.0 °C (hexane / ethyl acetate = 15 / 1); $[\alpha]_D^{21} = +14.5$ (1.47, MeOH); ¹H-NMR (300 MHz, CDCl₃) δ : 7.22 (AA'XX', *J* = 8.6 Hz, 2H), 6.85 (AA'XX', *J* = 8.6 Hz, 2H), 4.88 (br, 1H), 4.22 (m of d, *J* = 49.5, 1H), 3.92 (dd, *J* = 10.5 and 4.8 Hz, 1H), 2.34 (ddd, A part of AB, *J*_{AB} = 14.8 Hz, *J* = 11.1, 10.0 and 4.8 Hz, 1H), 1.98 (ddd, B part of AB, *J*_{AB} = 14.8 Hz, *J* = 35.6, 10.5 and 2.5 Hz, 1H), 1.75-1.16 (m, 10H), 0.86 (t, *J* = 6.7 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ : 155.8, 129.1, 126.2, 121.3, 116.1, 90.2 (d, *J* = 169.8 Hz), 40.7 (d, *J* = 20.8 Hz), 34.8 (d, *J* = 20.8 Hz), 32.3 (d, *J* = 4.4 Hz), 31.5, 28.9, 24.8 (d, *J* = 4.4 Hz), 22.4, 14.0; ¹⁹F NMR (282 MHz, CDCl₃, external standard: CF₃CO₂H) δ : 109.0 (m); IR (CHCl₃): 3595, 3300, 2959, 2932, 2860, 2243, 1614, 1516, 1456, 1437, 1265, 1174, 833 cm⁻¹; MS EI (20 eV) *m*/*z*: 263 (M⁺, 50), 145 (44), 133 (62), 132 (100), 69 (18); HRMS calcd for C₁₆H₂₂NOF (M⁺): 263.1685, found: 263.1674; Anal. Calcd for C₁₆H₂₂NOF; C, 72.97; H, 8.42; N, 5.32. Found : C, 72.93; H, 8.34; N, 5.35.

(2R, 4S)-4-Fluoro-2-(4-hydroxyphenyl)decanenitrile (anti-1)

To a dichloromethane (4 ml) solution of (2R, 4R)-4-hydroxy-2-(4-hydroxyphenyl)decanenitrile (syn-6) (42 mg, 0.16 mmol) was added dropwise a dichloromethane (0.4 ml) solution of (diethylamino)sulfur trifluoride (DAST)¹⁶ (65 mg, 0.40 mmol) at -78°C under a nitrogen atmosphere, and the reaction mixture was stirred for 2 h. Water was added to the reaction mixture, and the solution was neutralized with 1N-sodium bicarbonate, then extracted with chloroform. The extract was washed with brine, dried (MgSO4), filtered, and concentrated *in vacuo*. The residue was purified by column chromatography (hexane / ethyl acetate = 4 / 1) to give a mixture of the product and olefin. To a THF (3 ml) solution of the obtained mixture and 4-methylmorpholine N-oxide (NMO) (10 mg, 0.085 mmol) was added a water (2 ml) solution of osmium(VIII) oxide (1 mg) at room temperature, and then the reaction mixture was stirred for 22 h. The reaction mixture was quenched with 20% sodium bisulfite solution, then extracted with ethyl acetate. The extract was washed with brine, dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified by column chromatography (hexane / ethyl acetate = 5/1) to give (2R, 4S)-4-fluoro-2-(4-hydroxyphenyl)decanenitrile (anti-1) (30 mg, 2 steps 71%). Colorless needles; mp 82.0-82.5 °C (hexane / ethyl acetate = 12 / 1); $[\alpha]_D^{14} = +29.7$ (0.798, MeOH); ¹H-NMR $(300 \text{ MHz}, \text{CDCl}_3)$ δ : 7.21 (AA'XX', J = 8.6 Hz, 2H), 6.85 (AA'XX', J = 8.6 Hz, 2H), 5.46 (br, 1H), 4.79 (m of d, J = 49.4, 1H), 4.03 (dd, J = 10.9 and 5.5 Hz, 1H), 2.12-1.97 (m, 2H), 1.80-1.21 (m, 10H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C-NMR (100 MHz, 100 MHz), 1.80-1.21 (m, 10H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C-NMR (100 MHz), 1.80-1.21 (m, 10H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C-NMR (100 MHz), 1.80-1.21 (m, 10H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C-NMR (100 MHz), 1.80-1.21 (m, 10H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C-NMR (100 MHz), 1.80-1.21 (m, 10H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C-NMR (100 MHz), 1.80-1.21 (m, 10H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C-NMR (100 MHz), 1.80-1.21 (m, 10H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C-NMR (100 MHz), 1.80-1.21 (m, 10H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C-NMR (100 MHz), 1.80-1.21 (m, 10H), 0.89 (t, J = 6.8 Hz), 1.80-1.21 (m, 10H), 0.80 (t, J = 6.8 Hz), 1.80-1.21 (m, 10H), 1.80-1.21 (m, 10H), 0.89 (t, J = 6.8 Hz), 1.80-1.21 (m, 10H), 0.80 (t, J = 6.8 Hz), 1.80-1.21 (m, 10H), 1.80-1.21 (m, 10H), 1.80-1.21 (m, 10H CDCl₃) δ: 155.7, 128.4, 127.2, 120.5, 116.1, 91.4 (d, *J* = 169.4 Hz), 41.8 (d, *J* = 20.6 Hz), 35.0 (d, *J* = 20.6 Hz), 33.1 (d, *J* = 4.0 Hz), 31.6, 29.0, 24.7 (d, J = 4.0 Hz), 22.5, 14.0; ¹⁹F NMR (282 MHz, CDCl₃, external standard: CF₃CO₂H) δ : 107.7 (m); IR (CHCl₃): 3595, 3312, 2957, 2934, 2860, 2243, 1614, 1516, 1456, 1437, 1265, 1174, 833 cm⁻¹; MS EI (20 eV) *m/z*: 263 (M⁺, 66), 145 (65), 133 (85), 132 (100), 69 (19); HRMS calcd for C₁₆H₂₂NOF (M⁺): 263.1685, found: 263.1673; Anal. Calcd for C₁₆H₂₂NOF: C, 72.97; H, 8.42; N, 5.32. Found: C, 72.74; H, 8.63; N, 5.58.

Synthesis of *syn-* and *anti-*4-Fluoro-2-(4-methoxyphenyl)decanenitrile (2)

(2S, 4S)-4-Fluoro-2-(4-methoxyphenyl)decanenitrile (syn-2)

To a dichloromethane (7.5 ml) solution of (2S, 4R)-4-hydroxy-2-(4-methoxyphenyl)decanenitrile (anti-3) (384 mg, 1.39 mmol) was added dropwise a dichloromethane (2.09 ml) solution of (dimethylamino)sulfur trifluoride (methyl-DAST) (278 mg, 2.09 mmol) at room temperature under a nitrogen atmosphere, and the reaction mixture was stirred for 22.5 h. The reaction mixture was poured into ice-water, and neutralized with 1N-sodium bicarbonate (pH 8), then extracted with chloroform. The extract was washed with brine, dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified by column chromatography (hexane / ethyl acetate = 20 / 1) to give a mixture of the product and olefin. To a THF (5 ml) solution of the obtained mixture and 4methylmorpholine N-oxide (NMO) (80 mg, 0.68 mmol) was added a water (4 ml) solution of osmium(VIII) oxide (4 mg) at room temperature, and the reaction mixture was stirred for 30 h. The reaction mixture was quenched with 20% sodium bisulfite solution, then extracted with ethyl acetate. The extract was washed with brine, dried (MgSO₄), filtered, and concentrated in vacuo. The residue was purified by column chromatography (hexane / ethyl acetate = 20 / 1) to give (2S, 4S)-4-fluoro-2-(4methoxyphenyl)decanenitrile (syn-2) (146 mg, 2 steps 38%). Colorless oil; $[\alpha]_D^{19} = +12.8$ (0.897, MeOH); ¹H-NMR (300 MHz, CDCl₃) δ: 7.26 (AA'XX', J = 8.7 Hz, 2H), 6.92 (AA'XX', J = 8.7 Hz, 2H), 4.21 (m of d, J = 49.5, 1H), 3.93 (dd, J = 10.6 and 4.8 Hz, 1H), 3.82 (s, 3H), 2.35 (ddd, A part of AB, $J_{AB} = 14.4$ Hz, J = 11.1, 10.0 and 4.8 Hz, 1H), 1.99 (ddd, B part of AB, $J_{AB} = 14.4 \text{ Hz}, J = 35.7, 10.6 \text{ and } 2.6 \text{ Hz}, 1\text{H}), 1.73-1.23 \text{ (m, 10H)}, 0.86 \text{ (t, } J = 6.8 \text{ Hz}, 3\text{H}); ^{1}\text{H-NMR}$ (400 MHz, toluene- d_{8}) δ : 6.97 (AA'XX', J = 8.7 Hz, 2H), 6.63 (AA'XX', J = 8.7 Hz, 2H), 3.98 (m of d, J = 49.6, 1H), 3.53 (dd, J = 10.6 and 4.9 Hz, 1H), 3.26 (s, 3H), 1.95 (ddd, A part of AB, $J_{AB} = 14.2$ Hz, J = 11.1, 10.0 and 4.9 Hz, 1H), 1.54 (ddd, B part of AB, $J_{AB} = 14.2$ Hz, J = 14.2 Hz, J34.9, 10.6 and 2.7 Hz, 1H), 1.38-0.93 (m, 10H), 0.87 (t, J = 7.2 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ : 159.5, 128.9, 126.4, 121.2, 114.6, 90.1 (d, J = 169.4 Hz), 55.3, 40.8 (d, J = 20.7 Hz), 34.8 (d, J = 20.7 Hz), 32.3 (d, J = 4.4 Hz), 31.6, 28.9, 24.8 (d, J = 20.7 Hz), 32.3 (d, J = 4.4 Hz), 31.6, 28.9, 24.8 (d, J = 20.7 Hz), 34.8 (d, J = 20.7 Hz), 34 = 4.4 Hz), 22.5, 14.0; ¹³C-NMR (100 MHz, toluene-*d*₈) δ : 160.0, 129.2, 127.3, 121.1, 114.7, 90.1 (d, *J* = 170.5 Hz), 54.7, 41.1 (d, *J* = 20.6 Hz), 35.1 (d, *J* = 20.6 Hz), 32.5 (d, *J* = 4.4 Hz), 32.1, 29.5, 25.2 (d, *J* = 4.4 Hz), 23.0, 14.3; ¹⁹F NMR (282 MHz, CDCl₃, external standard: CF₃CO₂H) δ : 109.0 (m); ¹⁹F NMR (376 MHz, C₆D₆, external standard: CF₃CO₂H) δ : 102.8 (m); IR (CHCl₃): 2959, 2934, 2860, 2243, 1612, 1514, 1466, 1306, 1252, 1180, 1036, 831, 806 cm⁻¹; MS EI (20 eV) *m/z*: 277 (M⁺, 20), 159 (16), 147 (19), 146 (100); HRMS calcd for C₁₇H₂₄NOF (M⁺): 277.1842, found: 277.1837.

(2R, 4S)-4-Fluoro-2-(4-methoxyphenyl)decanenitrile (anti-2)

To a dichloromethane (8.5 ml) solution of (2R, 4R)-4-hydroxy-2-(4-methoxyphenyl)decanenitrile (syn-3) (292 mg, 1.06 mmol) was added dropwise a dichloromethane (1.59 ml) solution of (dimethylamino)sulfur trifluoride (methyl-DAST) (212 mg, 1.59 mmol) at room temperature under a nitrogen atmosphere, and the reaction mixture was stirred for 19.5 h. The reaction mixture was poured into ice-water, and neutralized with 1N-sodium bicarbonate (pH 8), then extracted with chloroform. The extract was washed with brine, dried (MgSO₄), filtered, and concentrated in vacuo. The residue was purified by column chromatography (hexane / ethyl acetate = 20 / 1) to give a mixture of the product and olefin. To a THF (5 ml) solution of the obtained mixture and 4methylmorpholine N-oxide (NMO) (80 mg, 0.68 mmol) was added a water (4 ml) solution of osmium(VIII) oxide (4 mg) at room temperature, and the reaction mixture was stirred for 30 h. The reaction mixture was quenched with 20% sodium bisulfite solution, then extracted with ethyl acetate. The extract was washed with brine, dried (MgSO₄), filtered, and concentrated in vacuo. The residue was purified by column chromatography (hexane / ethyl acetate = 20 / 1) to give (2R, 4S)-4-fluoro-2-(4methoxyphenyl)decanenitrile (anti-2) (127 mg, 2 steps 43%). Colorless needles; mp 50.8-51.4 °C (hexane / ethyl acetate = 100 / 1); $[\alpha]_D^{18} = +23.8 (1.03, \text{MeOH})$; ¹H-NMR (300 MHz, CDCl₃) δ : 7.27 (AA'XX', J = 8.7 Hz, 2H), 6.91 (AA'XX', J = 8.7 Hz, 2H), 4.80 (m of d, J = 49.9 Hz, 1H), 4.04 (dd, J = 10.7 and 5.1 Hz, 1H), 3.81 (s, 3H), 2.15-1.97 (m, 1H), 1.75-1.26 (m, 11H), 0.89 (t, J = 6.8 Hz, 3H); ¹H-NMR (400 MHz, toluene-dg) δ : 6.91 (AA'XX', J = 8.7 Hz, 2H), 6.62 (AA'XX', J = 8.7 Hz, 2H), 4.67 (m of d, J = 51.8, 1H), 3.71 (dd, J = 11.5 and 4.5 Hz, 1H), 3.28 (s, 3H), 1.68-1.51 (m, 2H), 1.43-1.09 (m, 10H), 0.90 (t, J = 10.5 m s J = 10.57.1 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃) δ : 159.4, 128.2, 127.5, 120.4, 114.5, 91.3 (d, J = 148.1 Hz), 55.3, 42.0 (d, J = 20.8Hz), 35.0 (d, J = 20.8 Hz), 33.1 (d, J = 3.9 Hz), 31.6, 29.0, 24.8 (d, J = 3.9 Hz), 22.5, 14.0; ¹³C-NMR (100 MHz, toluene-dg) δ : 159.8, 128.5, 128.2, 120.3, 114.7, 90.5 (d, J = 170.1 Hz), 54.7, 42.4 (d, J = 20.8 Hz), 35.4 (d, J = 20.8 Hz), 33.4 (d, J = 4.0 Hz), 32.1, 29.6, 25.3 (d, J = 4.0 Hz), 23.0, 14.3; ¹⁹F NMR (282 MHz, CDCl₃, external standard: CF₃CO₂H) δ : 107.7 (m); ¹⁹F NMR (376 MHz, C₆D₆, external standard: CF₃CO₂H) δ: 92.6 (m); IR (CHCl₃): 2959, 2934, 2860, 2243, 1612, 1514, 1466, 1304, 1254, 1180, 1034, 831, 806 cm⁻¹; MS EI (20 eV) m/z: 277 (M⁺, 25), 159 (18), 147 (19), 146 (100); HRMS calcd for C17H24NOF (M⁺): 277.1842, found: 277.1833; Anal. Calcd for C17H24NOF: C, 73.61; H, 8.72; N, 5.05. Found : C, 73.76; H, 8.91; N. 5.35.

General Procedure for Protonation of syn- and anti-(4S)-4-Fluoro-2-(4-methoxyphenyl)decanenitriles

To a THF (0.5 ml) solution of (4S)-4-fluoro-2-(4-methoxyphenyl)decanenitriles (2) (31 mg, 0.112 mmol, syn : anti = 1.2 : 1) was added dropwise *n*-butyllithium (2.52 M in hexane, 53 µl, 0.134 mmol) at -78 °C under a nitrogen atmosphere, followed by the quick addition of hexamethylphosphramide (HMPA) (97 ml, 0.559 mmol). After stirring for 1 h, a THF (0.3 ml) solution of a proton source (12 equiv.) was added dropwise to the reaction mixture, which was stirred for additional 2 h at the same temperature. The reaction mixture was poured into water, neutralizated with 0.1N HCl, and extracted with five portions of ether. The ethereal extract was washed with water, and brine, dried (MgSO4), filtered, and concentrated in vacuo. The ratio of syn and anti was determined by the intergral of the proton at the 2-position on ¹H-NMR (400 MHz) of the crude residue. The residue was purified by column chromatography (hexane / ethyl acetate = 20 / 1) to give (4S)-4-fluoro-2-(4-methoxyphenyl)decanenitriles (2) in yield indicated in Table 4.

References for Supporting Information

- 15. (a) Node, M.; Nishide, K.; Sai, M.; Fujita, E. Tetrahedron Lett. 1978, 5211-5214. (b) Node, M.; Nishide, K.; Sai, M.; Fuji, K.; Fujita, E. J. Org. Chem. 1981, 46, 1991-1993.
- (a) Middleton, W. J. Org. Chem. 1975, 5, 574-578. Recent Advances in Selective Formation of the C-F Bond: (b) 16. Wilkinson, J. A. Chem. Rev. 1992, 92, 505-519. (c) Umemoto, T. J. Syn. Org. Chem. Jpn 1992, 50, 338-346.

Crystal structure of anti-1

anti-I


```
loop
_publ_author_name
_publ_author_footnote
_publ_author_address
 Kiyoharu Nishide '
 Associate Professor
;
;
 Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8414, JAPAN
;
_publ_section_synopsis
 ENTER SYNOPSIS
;
#______
# TEXT
_publ_section_abstract
   X-Ray crystallographic analyses of fluorocyanides anti-1 and 2 revealed a novel
intramolecular through-space interaction between F and CN in an acyclic system, which
was applied to a stereoselective protonation of an acyclic fluorocyanides 2 having
flexible conformation.
;
_publ_section comment
;
   ENTER TEXT
;
publ section acknowledgements
   We are grateful for a Grant-in-Aid (No. 11672126 to KN) from the Ministry of
Education, Science, Sports and Culture of Japan, in partial financial support of this
research. We are also grateful to Prof. Tamejiro Hiyama, Kyoto University, for helpful
discussions at Sagami Chemical Research Center. We also thank the Japan Energy
Corporation, Toda, Saitama, Japan, for its kind gift of (R)-epoxyoctane.
publ section references
;
   ENTER OTHER REFERENCES
Molecular Structure Corporation, Rigaku Corporation. (2000). teXsan.
Single Crystal Structure Analysis Software. Version 1.11.
MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Rigaku, 3-9-12 Akishima, Tokyo, Japan.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.
_publ_section_figure captions
;
   Figure 1
;
_publ_section_exptl_prep
   See supporting Information
_publ_section_exptl_refinement
;
   See supporting Information
data hagi-57-1
#_____
```

CHEMICAL DATA _chemical_formula_sum _chemical_formula_moiety _chemical_formula_weight _chemical_melting_point 'C16 H22 F N O ' 'C16 H22 F N O ' 263.35 ? _____ # CRYSTAL DATA symmetry cell setting monoclinic 'P 1 21 1' _symmetry_space_group_name_H-M symmetry_Int_Tables_number loop _symmetry_equiv_pos_as_xyz х,у,z -x,1/2+y,-z _cell_length a 7.855(2) _cell_length_b 5.462(2) _cell_length c 17.607(1) _cell_angle alpha 90 _cell_angle_beta 100.90(1)_cell_angle_gamma 90 _cell_volume 741.7(3) _cell_formula_units_Z 2 _____measurement_reflns_used _cell_measurement_theta_min _cell_measurement_theta_max _cell_measurement_toord 25 25.5 29.8 cell_measurement_temperature 296.2 #------_____ "'prismatic'exptl_crystal_colour'colorless'exptl_crystal_size_max0.300exptl_crystal_size_mid0.100exptl_crystal_size_min0.050exptl_crystal_size_rad? exptl_crystal_density_diffrn 1.179 ? exptl crystal density meas _exptl_crystal_density_method 'not measured' _exptl_absorpt_coefficient_mu 0.655 ____exptl_absorpt_correction_type none #_____ # EXPERIMENTAL DATA 'Cu K¥a' diffrn radiation type _diffrn_radiation_wavelength 1.5418 _diffrn_measurement_device_type 'Rigaku AFC7R' ¥w-2¥q 1337 _diffrn_reflns_number __diffrn_reflns_number0.014__diffrn_reflns_av_R_equivalents0.014__diffrn_reflns_theta_max60.06__diffrn_measured_fraction_theta_max0.9992__diffrn_reflns_theta_full60.06 diffrn_reflns_theta_full 60.06 diffrn_measured_fraction_theta_full 0.9992 diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit_h_min 8 -6 0 _diffrn_reflns_limit_l_min _diffrn_reflns_limit_l_max _diffrn_standards_number -19 19 3 _diffrn_standards_interval_count 150 _diffrn_standards_decay_% 0.38 ______ #______ # REFINEMENT DATA refine special details Refinement using reflections with $F^{2^{>}} - 10.0$ sigma($F^{2^{>}}$). The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^{2^{>} > 2.0}$ sigma($F^{2^{>}}$) is used only

for calculating R-factor (gt).

```
_reflns_number_total
                                      1233
_reflns_number_gt
                                      843
_____reflns_threshold_expression
                                      F^2^>2.0¥s(F^2^)
refine ls structure factor coef
                                      Fsqd
_refine_ls_R_factor_gt
                                     0.0309
refine_ls_wR_factor_ref
                                     0.0839
_refine_ls_hydrogen_treatment
                                     noref
_refine_ls_number_reflns
                                      1233
_refine_ls_number_parameters
                                      174
_refine_ls_goodness_of_fit_ref
                                     1.046
_refine_ls_weighting_scheme
                                      calc
_refine_ls_weighting_details
  w = 1/[\$s^2(Fo^2) + (0.03000(Max(Fo^2,0) + 2Fc^2)/3)^2]
_refine_ls shift/su max
                                      0.0011
_refine_diff_density max
                                      0.26
_refine_diff_density_min
                                      -0.25
_refine_ls_extinction_method
  'Zachariasen(1967) type 2 Gaussian isotropic'
_refine_ls_extinction_coef 0.11(2)
_refine_ls_abs_structure_details
                                      ?
_refine_ls_abs_structure_Flack
                                     0.5(9)
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion imag
_atom_type_scat_source
'C' 'C' 0.018 0.009
; International Tables for Crystallography
(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)
 'H' 'H' 0.000 0.000
;International Tables for Crystallography
(1992, Vol. C, Table 6.1.1.2)
 'F' 'F' 0.073 0.053
; International Tables for Crystallography
(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)
 'N' 'N' 0.031 0.018
; International Tables for Crystallography
(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)
 '0' '0' 0.049 0.032
; International Tables for Crystallography
(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)
# ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS
loop
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract
                y
_atom_site_fract_z
atom site U iso or equiv
_atom_site_adp_type
atom site occupancy
atom site calc flag
_atom_site refinement flags
atom site disorder assembly
atom site disorder group
F(1) F 0.9876(3) 0.665(2)
                                0.6921(1) 0.0678(7) Uani 1.00 d . . .
O(1) O 0.5171(3) 0.303(2) 0.9647(1) 0.0561(8) Uani 1.00 d . . .
N(1) N 1.2709(4) 0.801(2) 0.8539(2) 0.0576(10) Uani 1.00 d . . .
C(1)
     C 1.2034(4) 0.616(2)
                                 0.8437(2) 0.0436(10) Uani 1.00 d . . .
```

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.371(2) \\ 0.288(2) \\ 0.413(2) \\ 0.318(2) \\ 0.318(2) \\ 0.330(2) \\ 0.457(2) \\ 0.356(2) \\ 0.457(2) \\ 0.356(2) \\ 0.493(2) \\ 0.358(2) \\ 0.358(2) \\ 0.358(2) \\ 0.158(2) \\ 0.158(2) \\ 0.316(2) \\ 0.316(2) \\ 0.515(2) \\ 0.515(2) \\ 0.536(2) \\ 0.2658 \\ 0.1226 \\ 0.3164 \\ 0.3968 \\ 0.1523 \\ 0.3458 \\ 0.4285 \\ 0.6107 \\ 0.1669 \\ 0.3442 \\ 0.4485 \\ 0.6107 \\ 0.1669 \\ 0.3442 \\ 0.4485 \\ 0.6297 \\ 0.1952 \\ 0.3687 \\ 0.4782 \\ 0.6668 \\ 0.4358 \\ 0.0394 \\ 0.0033 \\ 0.1705 \\ \end{array}$	0.8335(2) 0.7490(2) 0.6931(2) 0.6120(2) 0.5554(2) 0.4749(2) 0.4185(2) 0.3374(2) 0.2825(3) 0.8707(2) 0.9163(2) 0.9483(2) 0.9346(2) 0.9346(2) 0.8904(2) 0.8588(2) 0.8613 0.7478 0.7302 0.7112 0.6131 0.5939 0.5755 0.5520 0.4782 0.4554 0.4377 0.4164 0.3386 0.3183 0.2977 0.2834 0.2316 0.9255 0.9797 0.9915	0.0431(9) 0.049(1) 0.049(1) 0.059(1) 0.059(1) 0.064(1) 0.064(1) 0.066(1) 0.072(1) 0.0400(9) 0.0425(10) 0.0425(10) 0.0445(10) 0.0445(10) 0.0445(10) 0.0442(10) 0.0442(10) 0.0452(10) 0.0452(10) 0.0583 0.0583 0.0583 0.0583 0.0578 0.0700 0.0700 0.0768 0.0762 0.0762 0.0762 0.0786 0.0511 0.0526 0.1138	Uani 1.00 Uani 1.00 Uiso 1.00	<pre>) d) calc) calc</pre>	
<pre>H(21) H 0.6017 H(22) H 0.8514 loop_ _atom_site_aniso_lat _atom_site_aniso_U_2 _c(1) 0.048(2) c(1) 0.072(3) c(10) 0.072(3) c(12) 0.043(2) c(13) 0.048(2) c(14) 0.040(2) c(15) 0.039(2) c(16) 0.044(2) #</pre>	0.6423 0.6811 bel 11 22 33 12 13 23 0.046(1) 0.070(2) 0.048(2) 0.048(2) 0.045(2) 0.045(2) 0.045(2) 0.045(2) 0.046(2) 0.046(2) 0.045(2) 0.077(3) 0.077(3) 0.077(3) 0.077(3) 0.077(3) 0.078(4) 0.089(4) 0.121(5) 0.040(2) 0.041(2) 0.041(2) 0.045(2) 0.045(2) 0.045(2) 0.045(2) 0.045(2) 0.045(2) 0.045(2) 0.045(2) 0.045(2) 0.045(2) 0.039(2) 	0.8806 0.8291 0.071(2) 0.059(2) 0.052(2) 0.052(2) 0.052(2) 0.055(2) 0.055(2) 0.055(2) 0.055(2) 0.055(2) 0.055(2) 0.055(2) 0.055(2) 0.055(2) 0.060(2) 0.061(2) 0.041(2) 0.041(2) 0.041(2) 0.045(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.051(2) 0.052(2) 0.051(2)	0.0537 0.0521 0.0521 0.006(2) 0.000(2) 0.007(2) 0.001(2) 0.001(2) 0.001(2) 0.001(2) 0.001(2) 0.001(2) 0.001(2) 0.001(3) 0.001(3) 0.001(3) 0.001(2) 0.000(1) 0.008(2) 0.000(2)	Uiso 1.00 Uiso 1.00 Uiso 1.00 .005(1) .024(1) .011(2) .014(2) .013(1) .019(1) .017(2) .017(2) .016(2) .016(2) .020(2) 0.004(2) .004(1) .008(1) .012(2) .009(1) .008(2) .013(2) 	0.003(1) 0.011(2) 0.004(2) 0.004(2) 0.005(2) -0.002(2) -0.002(2) -0.007(2) -0.002(2) -0.007(2) -0.002(2) 0.003(2) 0.005(2) -0.005(2) -0.005(2)	-

_computing_cell_refinement 'MSC/AFC Diffractometer Control' 'teXsan Ver. 1.11' _computing_data_reduction _computing_structure_solution SIR92 'teXsan Ver. 1.10' _computing_structure_refinement 'teXsan Ver. 1.11' ? #-----_geom_special details ; ? ; loop _geom_bond_atom_site label 1 _geom_bond_atom_site label 2 _geom_bond_distance _geom_bond_site symmetry 1 _geom_bond_site_symmetry_2 _geom_bond_publ flag F(1) C(1) 2.890(4) . . yes C(4) F(1) 1.411(7) . . yes 1.389(4) C(14) 0(1) . . yes 1.140(5) 1.473(6) C(1) N(1) . . yes C(1) C(2) . . yes 1.534(6) . . yes 1.530(5) . . yes 1.497(6) . yes 1.500(6) . yes 1.502(7) . yes 1.520(7) . yes C(2) C(3) C(11) C(2) C(4) C(3) C(4) C(5) C(5) C(6) C(7) . . yes C(6) 1.520(7) . . yes 1.513(7) . . yes 1.511(7) . . yes 1.494(9) . . yes 1.386(5) . . yes 1.378(5) . . yes 1.387(5) . . yes 1.279(5) . . yes C(8) C(7) C(8) C(9) C(9) C(10) C(12) C(11) C(11) C(16) C(12) C(13) 1.378(5) . . yes 1.368(6) . . yes C(13) C(14) C(14) C(15) C(16) 1.380(5) C(15) . . yes loop geom angle atom site label 1 geom angle atom site label 2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry 1 _geom_angle_site_symmetry_2 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C(2) C(1) 177.0(4) N(1) . . . yes . . . yes C(1) C(2) C(3) 112.1(3) 111.1(3) . . . yes C(1) C(2) C(11) 89.1(3) C(1) F(1) C(4) . . . yes . . . yes C(3) C(2) C(11) 114.2(3) 117.4(4) C(4) C(2) C(3) . . . yes N(1) 103.9(3) F(1) C(1) . . . yes 78.9(3) C(1) C(2) F(1) . . . yes C(3) 108.9(4) C(4) F(1) . . . yes F(1) C(5) 108.4(4) C(4) . . . yes C(5) 114.3(4) C(3) C(4) . . . yes C(4) C(5) C(6) 114.9(4) . . . yes C(5) C(6) C(7) 114.5(4) . . . yes C(6) C(7) C(8) 113.9(4) . . . yes C(7) C(8) C(9) 114.9(4) . . . yes C(8) C(9) C(10) 113.4(5) . . . yes C(2) C(11) C(12) 119.6(3) . . . yes C(2) C(11) C(16) 122.0(3) . . . yes C(11) C(16) 118.4(3) . . . yes C(12)

C(11) C(12) O(1) O(1) C(13) C(14)	C (12) C (13) C (14) C (14) C (14) C (14) C (15)	C (13) C (14) C (13) C (15) C (15) C (16)	120.8(4 119.3(4 121.9(4 117.5(4 120.6(3 119.7(4	4)	ies ies ies ies ies		
C(11)	C(16)	C(15)	121.2(4	1) 5	yes		
# loop							
_geom_tors	ion_atom_	site_label_	1				
_geom_tors	ion_atom_	site_label_	2				
_geom_tors	ion_atom_	_site_label_ site label	4				
_geom_tors	ion –		-				
_geom_tors	ion_site_	symmetry_1					
_geom_tors	ion_site_	symmetry 3					
_geom_tors	ion_site_	symmetry_4					
_geom_tors	ion_publ_	flag	C(1)	9 6 (2)			
F(1)	C(4) C(4)	C(2)	C(1)	-8.6(3) 59.6(5)	• • • •	yes ves	
F(1)	C(4)	C(5)	C(6)	-59.3(5)		yes	
0(1)	C(14)	C(13)	C(12)	179.7(4)		yes	
O(1)	C(14)	C(15)	C(16)	$1^{7}/9.^{7}(4)$	• • • •	yes	
N(1)	C(1) C(1)	C(2)	C(11)	106(7)		yes ves	
C(1)	C(2)	C(3)	C(4)	-71.7(4)		yes	
C(1)	C(2)	C(11)	C(12)	-134.1(4)		yes	
C(1)	C(2)	C(11) C(4)	C(16) C(5)	4/.6(5) -179 1(4)	• • • •	yes	
C(2)	C(11)	C(12)	C(13)	-177.4(3)		yes	
C(2)	C(11)	C(16)	C(15)	176.7(4)		yes	
C(3)	C(2)	C(11)	C(12)	97.9(4)	• • • •	yes	
C(3)	C(2) C(4)	C(11) C(5)	C(10) C(6)	179.0(4)		yes ves	
C(4)	C(3)	C(2)	C(11)	55.8(5)	• • • •	yes	
C(4)	C(5)	C(6)	C(7)	-176.1(5)		yes	
C(5)	C(6) C(7)	C(7) C(8)	C(8) C(9)	-1/8.5(5) 178 6(5)	••••	yes	
C(7)	C(8)	C (9)	C(10)	-177.8(5)		yes	
C(11)	C(12)	C(13)	C(14)	0.0(6)		yes	
C(11)	C(16)	C(15)	C(14)	1.3(6)	• • • •	yes	
C(12) C(12)	C(11) C(13)	C(16) C(14)	C(15) C(15)	-0.4(6)	• • • •	yes ves	
C(13)	C(12)	C(11)	C(16)	0.9(5)	• • • •	yes	
C(13)	C(14)	C(15)	C(16)	-0.3(6)		yes	
#	C(14)	C(15)	C(16)	-0.3(6)	· · · ·	yes 	
loop_							
_geom_cont	act_atom_	site_label_	1				
_geom_cont	act_atom_ act_dista	site_label_ ince					
geom cont	act_dibed	symmetry 1					
_geom_cont	act_site_	symmetry_2					
_geom_cont	act_publ_	_flag 2 890(4)	2				
F(1)	C(1) C(3)	3.594(7)	. 1 565	?			
0(1)	0(1)	3.031(2)	. 2_657	?			
0(1)	O(1)	3.031(2)	2_{-647}	?			
O(1)	IN (1) C (1)	3.309(4) 3.399(5)	· 2_/4/ . 1_455	5 •			
0(1)	C(2)	3.515(4)	. 1 455	?			
N(1)	C(2)	3.321(6)	. 1_565	?			
N(1)	C(3)	3.388(6)	. 1_565	?			
N(1)	C(13) C(12)	3.583(5)	$. 1_{000}$	· ?			
C(12)	C(16)	3.591(6)	. 1_545	?			

C(13)	C(1	5)	3.593(6) .	1_545 ?
" Intermo	lecular	Distar	ices	
	atom	atom	distance	ADC (*)
	0(1)	H(20)	2.14(6)	65702
#	Contac in the	ts out least	to 3.60 angs significant	troms. Estimated standard deviations figure are given in parentheses.

Crystal structure of *syn-***1**

Intermolecular Hydrogen bonding of syn-1


```
data (2S, 4S)-4-Fluoro-2-(4-hydroxyphenyl)decanenitrile (syn-1)
audit creation date
                               'Wed Oct 10 15:25:39 2001'
_audit_creation method
                               'by teXsan'
                               ?
audit update record
_____
# PROCESSING SUMMARY (IUCr Office Use Only)
_journal_date_recd electronic
_journal_date_from_coeditor
_journal_date_accepted
                                ?
journal coeditor code
                                ?
_____
# SUBMISSION DETAILS
_publ_contact_author name
                              ' Manabu Node'
_publ_contact_author address
   Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8414, JAPAN
;
_publ_contact_author email
                               ' node@mb.kyoto-phu.ac.jp '
_publ_contact_author_fax
                              ' +81-75-59<sup>5</sup>-4775 '
_publ_contact_author_phone
                              ' +81-75-595-4639 '
_publ_contact_letter
   ENTER TEXT OF LETTER
;
publ requested journal
                              ' Chem. Commun.'
publ requested category
                               ?
publ requested coeditor name
                               ?
# TITLE AND AUTHOR LIST
publ section title
;
   A Novel Intramolecular Through-Space Interaction between F and CN:
A Strategy for the Conformational Control of an Acyclic System
;
publ section title footnote
;
   ENTER FOOTNOTE TO TITLE OF PAPER
loop
publ author name
_publ_author_footnote
publ_author_address
' Kiyoharu Nishide '
Associate Professor
;
 Kyoto Pharmaceutical University, Misasaqi, Yamashina, Kyoto 607-8414, JAPAN
;
publ section synopsis
 ENTER SYNOPSIS
#_____
# TEXT
_publ_section_abstract
   X-Ray crystallographic analyses of fluorocyanides anti-1 and 2 revealed a novel
```

X-Ray crystallographic analyses of fluorocyanides anti-1 and 2 revealed a novel intramolecular through-space interaction between F and CN in an acyclic system, which was applied to a stereoselective protonation of an acyclic fluorocyanides 2 having flexible conformation.

```
_publ_section comment
   ENTER TEXT
;
_publ_section_acknowledgements
   We are grateful for a Grant-in-Aid (No. 11672126 to KN) from the Ministry of
Education, Science, Sports and Culture of Japan, in partial financial support of this
research. We are also grateful to Prof. Tamejiro Hiyama, Kyoto University, for helpful
discussions at Sagami Chemical Research Center. We also thank the Japan Energy
Corporation, Toda, Saitama, Japan, for its kind gift of (R)-epoxyoctane.
;
_publ_section_references
;
   ENTER OTHER REFERENCES
Molecular Structure Corporation, Rigaku Corporation. (2000). teXsan.
Single Crystal Structure Analysis Software. Version 1.11.
MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Rigaku, 3-9-12 Akishima, Tokyo, Japan.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.
;
_publ_section_figure captions
;
   none
;
_publ_section_exptl_prep
   See supporting Information
;
_publ_section_exptl refinement
;
   See supporting Information
data RGK380raxlt Kyoto Pharm. U (KN-Hagi-56)
#_____
# CHEMICAL DATA
_chemical_formula_sum
                                 'C16 H22 F N O '
_chemical_formula_moiety
                                 'C16 H22 F N O '
_chemical_formula_weight
                                 263.35
?
#_____
# CRYSTAL DATA
_symmetry_cell_setting
                                 orthorhombic
                              'P 21 21 21
_symmetry_space_group_name_H-M
symmetry_Int_Tables_number
                                 19
loop
_symmetry_equiv_pos_as_xyz
x,y,z
1/2-x,-y,1/2+z
1/2+x,1/2-y,-z
-x,1/2+y,1/2-z
cell length a
                                 7.509(1)
35.774(4)
_cell_length_c
                                 5.596(1)
cell angle alpha
                                 90
_cell_angle_beta
                                 90
_cell_angle_gamma
                                 90
_cell_volume
                                1503.3(4)
cell formula units Z
                                 4
                                 772
cell measurement reflns used
```

_cell_measurement_theta_min 2.5 __cell_measurement_theta_max2.5_cell_measurement_theta_max20.0_cell_measurement_temperature143.2 #_____ exptl_crystal_size_max 0.300 exptl_crystal_size_mid 0.100 _exptl_crystal_size_min 0.080 _exptl_crystal_size_rad ? _exptl_crystal_density_diffrn 1.163 _exptl_crystal_density_meas ? : 'not measured' _exptl_crystal_density_method _exptl_absorpt_coefficient_mu 0.080 _exptl_absorpt_correction_type none #-----_____ # EXPERIMENTAL DATA _diffrn_radiation_type 'Mo K¥a' ______diffrn_radiation_wavelength 0.7107 _diffrn_measurement_device_type 'Rigaku RAXIS-IV Imaging Plate' _diffrn_measurement_method ¥w _diffrn_detector_area_resol_mean 10.00 _diffrn_reflns_number 1400 _diffrn_reflns_av_R_equivalents _diffrn_reflns_theta_max 25.15 ______diffrn_measured_fraction_theta_max 0.8701 _diffrn_reflns_theta_full 25.15 _diffrn_measured_fraction_theta full 0.8701 ______diffrn_reflns_limit_h_min 0 diffrn reflns limit h max 8 -42 diffrn_reflns_limit_k_min diffrn reflns limit k max 42 diffrn reflns limit 1 min -5 _diffrn_reflns_limit_l_max 0 #------# REFINEMENT DATA _refine_special_details Refinement using reflections with $F^{2^{>} > 2.0}$ sigma($F^{2^{-}}$). The weighted R-factor (wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of $F^{2^{>}} > 2.0$ sigma($F^{2^{>}}$) is used only for calculating R-factor (gt). _reflns_number_total 1400 _reflns_number gt 1262 F^2^>2.0¥s(F^2^) _refine_ls_structure_factor coef F 0.0427 0.0565 _refine_ls_hydrogen_treatment noref _refine_ls_number_reflns 1262 _refine_ls_number_parameters 173 _refine_ls_goodness_of_fit_ref 1.124 _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'w = 1/[¥s^2^(Fo) + 0.00156|Fo|^2^]' refine ls shift/su max 0.0001 _refine_diff_density_max 0.18 refine_diff_density_min -0.14 _refine_ls_extinction method 'Zachariasen(1967) type 2 Gaussian isotropic' _refine_ls_extinction_coef 0.056(9) _refine_ls_abs structure details ? refine ls abs structure Flack ? loop atom type symbol atom type description

```
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
  'C''C' 0.003 0.002
; International Tables for Crystallography
(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)
  'H' 'H' 0.000 0.000
; International Tables for Crystallography
(1992, Vol. C, Table 6.1.1.2)
   'N' 'N' 0.006 0.003
; International Tables for Crystallography
(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)
   '0' '0' 0.011 0.006
; International Tables for Crystallography
(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)
   'F' 'F' 0.017 0.010
;International Tables for Crystallography
(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)
            -----
#----
# ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
atom site U iso or equiv
atom site adp type
atom site occupancy
atom site calc flag
atom site refinement flags
atom site disorder assembly
 atom site disorder group
 F(1) F 0.3965(2) 0.12711(5) 0.7137(3) 0.0385(5) Uani 1.00 d . .
 O(1) O 0.4202(3) -0.05599(5) 0.2395(4) 0.0397(6) Uani 1.00 d . . .
 N(1) N 0.9043(4) 0.10263(7) 0.0888(6) 0.0475(8) Uani 1.00 d . . .
 C(1) C 0.6228(4) 0.09568(7) 0.3630(6) 0.0317(7) Uani 1.00 d . . .
 C(2) C 0.4842(4) 0.12617(7) 0.3068(5) 0.0338(8) Uani 1.00 d . . .
 C(3) C 0.3277(4) 0.12516(8) 0.4772(5) 0.0311(8) Uani 1.00 d . . .
 C(4)
        C 0.1995(4) 0.15747(8) 0.4426(6) 0.0342(8) Uani 1.00 d . . .
        C 0.0468(4) 0.15764(8) 0.6203(6) 0.0336(8) Uani 1.00 d . . .
C -0.0863(4) 0.18894(8) 0.5790(6) 0.0368(8) Uani 1.00 d . . .
 C(5)
 C(6)

      C
      -0.0863(4)
      0.18894(8)
      0.5790(6)
      0.0368(8)
      Uani 1.00 d . . .

      C
      -0.2347(4)
      0.19057(8)
      0.7621(6)
      0.0360(8)
      Uani 1.00 d . . .

      C
      -0.3704(4)
      0.22149(8)
      0.7173(6)
      0.0410(8)
      Uani 1.00 d . . .

      C
      -0.5165(5)
      0.22351(9)
      0.9017(7)
      0.051(1)
      Uani 1.00 d . . .

      C
      0.7813(4)
      0.10062(7)
      0.2120(6)
      0.0358(8)
      Uani 1.00 d . . .

      C
      0.5578(3)
      0.05558(7)
      0.3351(5)
      0.0277(7)
      Uani 1.00 d . . .

      C
      0.5999(4)
      0.02948(7)
      0.5099(5)
      0.0284(7)
      Uani 1.00 d . . .

      C
      0.5548(4)
      -0.00786(7)
      0.4841(5)
      0.0314(8)
      Uani 1.00 d . . .

      C
      0.4676(4)
      -0.01963(7)
      0.2806(5)
      0.0296(7)
      Uani 1.00 d . . .

 C(7)
 C(8)
 C(9)
 C(10) C 0.7813(4)
 C(11)
 C(12)
 C(13)
 C(14) C 0.4676(4)
                             0.00620(8) 0.1039(6) 0.0316(8) Uani 1.00 d . . .
 C(15) C 0.4232(4)
 C(16)C0.4682(4)0.04348(7)0.1336(5)0.0305(8)Uani 1.00 d . . .H(1)H0.65880.09890.52450.0380Uiso 1.00 calc . .H(10)H0.4732-0.06910.32610.0429Uiso 1.00 calc . .
                                                                              Uiso 1.00 calc . .
 H(2a) H 0.5400
                             0.1499
                                              0.3182
                                                              0.0406
 H(2b) H 0.4415
                             0.1226
                                              0.1487
                                                              0.0406
                                                                              Uiso 1.00 calc . .
 Н(3) Н 0.2654
                              0.1023
                                              0.4574
                                                              0.0373
                                                                              Uiso 1.00 calc . . .
 H(4a) H 0.2639
                              0.1802
                                              0.4592
                                                              0.0410
                                                                               Uiso 1.00 calc . . .
 H(4b) Н 0.1513
                              0.1560
                                              0.2859
                                                              0.0410
                                                                               Uiso 1.00 calc . . .
                             0.1344
 Н(5а) Н -0.0143
                                              0.6087
                                                              0.0404
                                                                              Uiso 1.00 calc . . .
                                             0.7765 0.0404
0.5827 0.0442
 Н(5b) Н 0.0948 0.1603
                                                                              Uiso 1.00 calc . . .
                             0.2120
 H(6a) H -0.0239
                                                                               Uiso 1.00 calc . . .
```

H(6b) H(7a) H(7b) H(8a) H(8b) H(9a) H(9b) H(9c) H(12) H(13) H(15) H(16)	H -0.1382 H -0.2955 H -0.1829 H -0.3093 H -0.4235 H -0.4673 H -0.6025 H -0.5718 H 0.6609 H 0.5838 H 0.3625 H 0.4368	0.1856 0.1673 0.1945 0.2447 0.2173 0.2306 0.2415 0.1997 0.0374 -0.0253 -0.0017 0.0610	0.4257 0.7607 0.9149 0.7161 0.5655 1.0514 0.8537 0.9162 0.6498 0.6061 -0.0362 0.0133	0.0442 0.0432 0.0432 0.0492 0.0615 0.0615 0.0615 0.0340 0.0377 0.0379 0.0366	Uiso 1.0 Uiso 1.0	0 calc 0 calc
loop_ _atom_s _atom_s _atom_s _atom_s _atom_s	ite_aniso_la ite_aniso_U_ ite_aniso_U_ ite_aniso_U_ ite_aniso_U_ ite_aniso_U_	ubel 11 22 33 12 13				
_atom_s F(1) O(1) N(1) C(2) C(3) C(4) C(5) C(6) C(7) C(6) C(7) C(8) C(7) C(10) C(11) C(12) C(12) C(13) C(14) C(15) C(16)	ite_aniso_U 0.0374(9) 0.045(1) 0.048(2) 0.035(1) 0.035(2) 0.036(2) 0.036(2) 0.036(2) 0.036(2) 0.033(1) 0.039(2) 0.047(2) 0.037(2) 0.023(1) 0.027(1) 0.027(1) 0.027(1) 0.028(2) 0.031(2)	23 0.0473(10) 0.0286(10) 0.037(1) 0.028(1) 0.027(1) 0.032(1) 0.032(1) 0.034(1) 0.034(1) 0.034(1) 0.034(1) 0.034(1) 0.034(1) 0.034(1) 0.027(1) 0.027(1) 0.028(1) 0.029(1) 0.029(1) 0.035(1)	$\begin{array}{c} 0.0307(9) \\ 0.045(1) \\ 0.058(2) \\ 0.032(2) \\ 0.035(2) \\ 0.035(2) \\ 0.034(2) \\ 0.034(2) \\ 0.033(2) \\ 0.042(2) \\ 0.042(2) \\ 0.042(2) \\ 0.050(2) \\ 0.058(2) \\ 0.058(2) \\ 0.032(2) \\ 0.032(2) \\ 0.034(2) \\ 0.032(2) \\ 0.032(2) \\ 0.028(2) \\ 0.028(2) \\ 0.028(2) \\ 0.026(2) \end{array}$	0.0077(8) -0.0028(9) -0.005(1) -0.002(1) 0.002(1) 0.001(1) 0.001(1) 0.001(1) 0.001(1) 0.001(1) 0.001(1) 0.001(1) 0.013(2) -0.003(1) 0.002(1) 0.005(1) -0.001(1) 0.002(1) 0.002(1) 0.004(1)	-0.0011(8) -0.009(1) 0.016(2) 0.004(1) 0.004(1) -0.001(1) 0.002(1) 0.001(1) 0.001(1) 0.001(2) 0.001(2) 0.005(2) 0.004(1) -0.001(1) -0.003(1) 0.005(1) -0.002(1) 0.001(1)	$\begin{array}{c} 0.0011(7) \\ -0.0018(9) \\ 0.000(1) \\ 0.001(1) \\ 0.001(1) \\ 0.002(1) \\ 0.002(1) \\ 0.002(1) \\ 0.002(1) \\ -0.001(1) \\ -0.001(1) \\ -0.001(1) \\ -0.001(1) \\ 0.000(1) \\ -0.001(1) \\ 0.001(1) \\ -0.002(1) \\ 0.002(1) \\ -0.002(1) \\ 0.003(1) \end{array}$
# _comput _comput _comput _comput _comput	ing_data_col ing_cell_ref ing_data_rec ing_structur ing_structur ing_publicat	lection inement duction e_solution e_refinement ion_material	'PROC 'PROC 'teXs SIR9 'teXs 'teXs 2	ESS' ESS' an Ver. 1.11 2 an Ver. 1.10 an Ver. 1.11		
	ond_atom_sit pecial_detai ond_atom_sit ond_distance ond_site_sym ond_site_sym ond_publ_fla C(3) C(14) C(10) C(2) C(10) C(11) C(3)	<pre>label_1 .ls .e_label_1 .e_label_2 .e metry_1 metry_2 .g 1.423(3) 1.368(3) 1.155(4) 1.540(4) 1.540(4) 1.523(4) 1.514(4)</pre>	 . yes 			

C (3) C (4) C (5) C (6) C (7) C (8) C (11) C (11) C (12) C (12) C (13) C (14) C (15)	C(4) C(5) C(6) C(7) C(8) C(9) C(12) C(12) C(16) C(13) C(14) C(15) C(16)	1.516(4) 1.518(4) 1.518(4) 1.515(4) 1.524(4) 1.508(5) 1.389(4) 1.383(4) 1.386(4) 1.379(4) 1.394(4) 1.385(4)	yes yes yes yes yes yes yes yes yes yes yes yes yes		
#					
_geom_angl	e_atom_sit	te_label_1			
_geom_angl	e_atom_sit	te_label_2			
_geom_angl	e_atom_si e	te_label_3			
_geom_angl	e_site_syr	nmetry_1			
_geom_angl	e_site_syr	nmetry_2			
_geom_angl	e_site_syr e_publ_fla	nmetry_3 aa			
C(2)	C(1)	C(10)	110.2(2)	yes	
C(2)	C(1)	C(11)	115.4(2)	yes	
C(10)	C(1) C(2)	C(11)	112 3(2)	yes	
F(1)	C(3)	C(2)	107.6(2)	yes	
F(1)	C(3)	C(4)	108.2(2)	yes	
C(2)	C(3) C(4)	C(4) C(5)	113.2(2) 113.5(2)	yes	
C(4)	C(5)	C(6)	113.6(2)	yes	
C(5)	C(6)	C(7)	114.2(2)	yes	
C(6) C(7)	C(7) C(8)	C(8) C(9)	114.1(2)	yes	
N(1)	C(10)	C(1)	176.4(3)	yes	
C(1)	C(11)	C(12)	119.2(2)	yes	
C(1) C(12)	C(11) C(11)	C(16)	122.3(2)	yes	
C(11)	C(12)	C(13)	121.3(3)	yes	
C(12)	C(13)	C(14)	119.8(2)	yes	
O(1)	C(14) C(14)	C(13) C(15)	123.5(2)	yes	
C(13)	C(14)	C(15)	119.8(2)	yes	
C(14)	C(15)	C(16)	119.6(3)	yes	
C(11) #	C(16)	C(15)	121.2(2)	yes	
loop					
_geom_tors	ion_atom_s	site_label_	1		
_geom_tors	ion_atom_s	site_label_ site_label	3		
geom tors	ion atom s	site label	4		
_geom_tors	ion				
_geom_tors	ion_site_s	symmetry_1 symmetry_2			
_geom_tors	ion_site_s	symmetry_3			
_geom_tors	ion_site_s	symmetry_4			
_geom_tors F(1)		C(1)	C(10)	-118.6(4)	. ves
F(1)	C(3)	C(2)	C(1)	54.2(3)	. yes
F(1)	C(3)	C(4)	C(5)	-58.1(3)	. yes
O(1)	C(14)	C(15) C(15)	C(12) C(16)	-179.7(3)	. yes
N(1)	C(10)	C(1)	C(2)	-121(5)	. yes
N(1)	C(10)	C(1)	C(11)	5(5)	. yes
C(1)	C(2) C(11)	C(3) C(12)	C(4) C(13)	-175.3(2)	. yes . ves
C(1)	C(11)	C(16)	C(15)	174.7(3)	. yes

C(2)	C(1)	C(11)	C(12)	-135.7(3)		. yes		
C(2)	C(1)	C(11)	C(16)	48.8(4)		. yes		
C(2)	C(3)	C(4)	C(5)	-177.3(2)		. yes		
C(3)	C(2)	C(1)	C(10)	-173.2(2)		. yes		
C(3)	C(2)	C(1)	C(11)	63.8(3)		. yes		
C(3)	C(4)	C(5)	C(6)	-177.4(2)		. yes		
C(4)	C(5)	C(6)	C(7)	-177.2(2)		. yes		
C(5)	C(6)	C(7)	C(8)	-178.8(2)		. yes		
C(6)	C(7)	C(8)	C(9)	-179.1(2)		. yes		
C(10)	C(1)	C(11)	C(12)	100.3(3)		. yes		
C(10)	C(1)	C(11)	C(16)	-75.2(3)		. yes		
C(11)	C(12)	C(13)	C(14)	0.5(4)		. yes		
C(11)	C(16)	C(15)	C(14)	0.5(4)		. yes		
C(12)	C(11)	C(16)	C(15)	-0.9(4)		. ves		
C(12)	C(13)	C(14)	C(15)	-0.9(4)		. ves		
C(13)	C(12)	C(11)	C(16)	0.3(4)		. ves		
C(13)	C(14)	C(15)	C(16)	0 4 (4)		. jes ves		
C(13)	C(14)	C(15)	C(16)	0.4(4)	•••	. yes		
#						• ycs		
" 1000								
aeom c	ontact atom	site label	1					
	ontact_atom_	site label	-2					
	ontact_dista							
	ontact_disca	symmetry 1						
	ontact_site_							
	ontact_bubl							
_geom_c		3_387(1)	1 556					
ェ(エ) エ(1)	C(2)	3 186(3)	· 1_000					
ェ(エ) エ(1)	O(1)	3 591 (3)	· 2_555					
$\Gamma(1)$	C(7)	2.001(3)	· 1_000					
O(1)	$\Gamma(1)$	2.000(3)	· 2_000					
\cup (1) \times (1)	C(5)	2.427(4)	· 2_334	: : 				
$N(\perp)$	C(J)	3.440(4)	. 1_034					
$\mathbb{N}(\perp)$	C(13)	3.454(4)	· 2_034					
$\mathbb{N}(1)$	C(4)	3.561(4)	. 1_000					
N(1)	C(14)	3.566(4)	. 2_654					
C(14)	C(15)	3.481(4)	. 2_555					
#								
Toob								
_geom_h	bond_atom_si	te_label_D						
_geom_h	bond_atom_si	te_label_H						
_geom_h	bond_atom_si	.te_label_A						
_geom_h	bond_site_sy	mmetry_D						
_geom_h	bond_site_sy	mmetry_H						
_geom_h	bond_site_sy	mmetry_A						
_geom_h	bond_site_di	.stance_DH						
_geom_h	bond_site_di	stance_HA						
_geom_h	bond_site_di	.stance_DA						
_geom_h	bond_angle_D	DHA						
_geom_h	bond_publ_fl	ag						
0(1)	H(10) N	1(1)	2_655 0.	782 2.110 2.	888(3)	173.732	no	
#								

anti-2

data_(2R, 4S)-4-Fluoro-2-(4-methoxyphenyl)decanenitrile (anti-2) audit creation date 'Wed Oct 10 19:10:37 2001' _audit_creation_method 'by teXsan' audit_update_record ? #-----# PROCESSING SUMMARY (IUCr Office Use Only) _journal_date_recd_electronic _journal_date_from_coeditor _journal_date_accepted ? ? ? ? journal coeditor code _____ # SUBMISSION DETAILS _publ_contact_author_name ' Manabu Node' _publ_contact_author_address ; Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8414, JAPAN ; _publ_contact_author email ' node@mb.kyoto-phu.ac.jp ' +81-75-595-4775' publ contact author fax +81-75-595-4639' publ contact author phone

```
_publ_contact_letter
   ENTER TEXT OF LETTER
;
                                  ' Chem. Commun.'
_publ_requested_journal
_publ_requested_category
                                   ?
publ requested coeditor name
#_____
# TITLE AND AUTHOR LIST
_publ_section_title
   A Novel Intramolecular Through-Space Interaction between F and CN:
A Strategy for the Conformational Control of an Acyclic System
;
publ section title footnote
;
   ENTER FOOTNOTE TO TITLE OF PAPER
;
loop
_publ_author_name
_publ_author_footnote
_publ_author_address
' Kiyoharu Nishide '
;
 Associate Professor
;
;
 Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8414, JAPAN
;
publ section synopsis
;
 ENTER SYNOPSIS
#_____
# TEXT
publ section abstract
   X-Ray crystallographic analyses of fluorocyanides anti-1 and 2 revealed a novel
intramolecular through-space interaction between F and CN in an acyclic system, which
was applied to a stereoselective protonation of an acyclic fluorocyanides 2 having
flexible conformation.
;
publ section comment
;
   ENTER TEXT
;
_publ_section_acknowledgements
   We are grateful for a Grant-in-Aid (No. 11672126 to KN) from the Ministry of
Education, Science, Sports and Culture of Japan, in partial financial support of this
research. We are also grateful to Prof. Tamejiro Hiyama, Kyoto University, for helpful
discussions at Sagami Chemical Research Center. We also thank the Japan Energy
Corporation, Toda, Saitama, Japan, for its kind gift of (R)-epoxyoctane.
_publ_section_references
   ENTER OTHER REFERENCES
Molecular Structure Corporation, Rigaku Corporation. (2000). teXsan.
Single Crystal Structure Analysis Software. Version 1.11.
MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
```

```
Rigaku, 3-9-12 Akishima, Tokyo, Japan.
North, A.C.T., Phillips, D. C. & Mathews, F. S. (1968).
Acta Cryst. A24, 351-359.
_publ_section_figure_captions
   none
;
_publ_section_exptl_prep
   See supporting Information
;
_publ_section_exptl_refinement
   See supporting Information
#-----
                _____
data HAGI-159
#_____
# CHEMICAL DATA
_chemical_formula_sum
_chemical_formula_moiety
_chemical_formula_weight
_chemical_melting_point
                            'C17 H24 F N O '
'C17 H24 F N O '
                               277.38
chemical melting point
                                ?
_____
# CRYSTAL DATA
_symmetry_cell_setting monoclinic
_symmetry_space_group_name_H-M 'P 1 21 1'
                               4
 symmetry Int Tables number
loop
_symmetry_equiv_pos_as_xyz
x,y,z
-x,1/2+y,-z
_cell_length_a
                                7.696(4)
_cell_length_b
                                5.627(3)
_cell_length c
                                18.628(2)
cell angle alpha
                                90
cell angle beta
                                95.02(2)
cell angle gamma
                                90
_cell_volume
                                803.6(6)
_cell_formula_units Z
                                2
_cell_measurement reflns used
                               25
_cell_measurement_theta_min
                                27.9
_cell_measurement_theta_max
                                29.9
                                296.2
_cell_measurement_temperature
_exptl_crystal_description
                               'prismatic'
                               'colorless'
_exptl_crystal_colour
_exptl_crystal_size_max
                                0.250
_exptl_crystal_size_mid
_exptl_crystal_size_min
                                0.200
                                0.100
_exptl_crystal_size_rad
_exptl_crystal_density_diffrn
                                2
                               1.146
exptl_crystal_density_meas
                                ?
#------
# EXPERIMENTAL DATA
_diffrn_radiation_type
                               'Cu K¥a'
diffrn radiation wavelength
                               1.5418
```

_diffrn_measurement_device_type 'Rigaku AFC7R' diffrn_measurement_method ¥w-2¥q diffrn reflns number 1449 0.032 diffrn reflns av R equivalents diffrn reflns theta max 60.15 diffrn measured fraction theta full 0.6018 _diffrn_reflns_limit_h_min 0 _diffrn_reflns_limit h max 8 _diffrn_reflns_limit_k_min -6 _diffrn_reflns_limit_k_max 0 _diffrn_reflns_limit_l_min -20 20 _diffrn_standards number 3 _diffrn_standards_interval_count _diffrn_standards_decay_% 150 0.00 _____ # REFINEMENT DATA refine special details ; Refinement using reflections with $F^{2^{}} > -10.0$ sigma($F^{2^{}}$). The weighted R-factor (wR) and goodness of fit (S) are based on $F^{2^{-}}$. R-factor (gt) are based on F. The threshold expression of $F^{2} > 2.0$ sigma(F^{2}) is used only for calculating R-factor (gt). ; _reflns_number total 1431 _reflns_number_gt 994 _refins_threshold_expression F^2^: _refine_ls_structure_factor_coef Fsqd F^2^>2.0¥s(F^2^) _refine_ls_R_factor_gt _refine_ls_wR_factor_ref 0.0580 0.1923 noref _refine_ls_hydrogen_treatment _refine_ls_number_reflns _refine_ls_number_parameters 1431 181 1.597 refine ls goodness of fit ref _refine_ls_weighting scheme calc _refine_ls_weighting_details $w = 1/[\$s^{2}(Fo^{2}) + (0.08000(Max(Fo^{2}, 0) + 2Fc^{2})/3)^{2}]$ _refine_ls_shift/su max 0.0001 _refine_diff_density max 0.18 _refine_diff_density^{_}min 0.00 _refine_ls_extinction_method none _refine_ls_extinction_coef ? ? _refine_ls_abs_structure_details _refine_ls_abs_structure_Flack -3.2(9) loop _atom_type_symbol _atom_type_description _atom_type_scat_dispersion real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C''C' 0.018 0.009 ; International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) 'H' 'H' 0.000 0.000 ; International Tables for Crystallography (1992, Vol. C, Table 6.1.1.2) 'F' 'F' 0.073 0.053 ; International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) 'N' 'N' 0.031 0.018 ; International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)

:						
, , , , , ,	0'	0 049 0 032				
• Thtorn	0 + + +	onal Tables	for Crustall	ography		
; Intern		onal lables	IOI CIYStall	ography		
(1992,	Vol	. C, Tables	4.2.6.8 and	6.1.1.1)		
;						
#						
# ATOMI	СС	OORDINATES A	ND DISPLACEM	IENT PARAMETE	IRS	
loop						
atom s	ito	label				
	1 + 0					
	i Le	_cype_symbol				
_atom_s	ite	_iract_x				
_atom_s	site	_fract_y				
_atom_s	ite	_fract_z				
atom s	ite	U iso or eq	uiv			
atom s	ite	adp type				
atoms	ite	occupancy				
atom s	ite					
_atom_s	it_		flags			
	1+0					
_atom_s	ille	_disorder_as	sembry			
_atom_s	site	_aisoraer_gr	oup			
F(1)	F	0.3657(4)	-0.5174	-0.1767(2)	0.0956(10)	Uani 1.00 d
0(1)	0	-0.2743(4)	-0.1691(9)	-0.4381(2)	0.0800(10)	Uani 1.00 d
N(1)	Ν	0.5426(5)	-0.660(1)	-0.3251(2)	0.079(1)	Uani 1.00 d
C(1)	С	-0.3280(6)	0.030(1)	-0.4811(2)	0.087(2)	Uani 1.00 d
C(2)	С	-0.1026(6)	-0.177(1)	-0.4089(2)	0.063(1)	Uani 1.00 d
C(3)	С	0 0172(6)	-0 001(1)	-0.4188(2)	0 068(1)	Uani 1 00 d
C(4)	C	0.0172(0)	-0.025(1)	-0.3859(2)	0.066(1)	Uppi $1 00 d$
	C	0.1073(0)	-0.023(1)	-0.3039(2)	0.000(1)	
C(5)	C	0.2337(5)	-0.216(1)	-0.3430(2)	0.060(1)	
C(6)	С	0.1126(6)	-0.392(1)	-0.3356(2)	0.066(1)	Uani 1.00 d
C(7)	С	-0.0586(6)	-0.372(1)	-0.3671(2)	0.068(1)	Uani 1.00 d
C(8)	С	0.4217(6)	-0.238(1)	-0.3079(2)	0.066(1)	Uani 1.00 d
C(9)	С	0.4906(6)	-0.477(1)	-0.3170(2)	0.068(1)	Uani 1.00 d
C(10)	С	0.4393(6)	-0.156(1)	-0.2288(2)	0.071(1)	Uani 1.00 d
C(11)	С	0.3291(7)	-0.278(1)	-0.1780(2)	0.071(1)	Uani 1.00 d
C(12)	Ĉ	0 3572(7)	-0 181(1)	-0.1019(2)	0 0 80 (1)	Uani 1 00 d
C(12)	c	0.2421(7)	-0.202(1)	-0.0500(2)	0.000(1)	Uani 1 00 d
C(13)	c	0.2421(7)	-0.302(1)	-0.0300(2)	0.000(2)	
C(14)	C	0.2657(7)	-0.198(1)	0.0257(2)	0.083(1)	
C(15)	C	0.1540(7)	-0.31/(1)	0.0/84(2)	0.085(2)	Uani 1.00 d
C(16)	С	0.1780(7)	-0.222(1)	0.1540(2)	0.088(2)	Uani 1.00 d
C(17)	С	0.0735(8)	-0.349(2)	0.2057(3)	0.105(2)	Uani 1.00 d
H(1)	Η	-0.2601	0.0344	-0.5224	0.1102	Uiso 1.00 calc
H(2)	Н	-0.3109	0.1688	-0.4546	0.1102	Uiso 1.00 calc
H(3)	Η	-0.4476	0.0119	-0.4986	0.1102	Uiso 1.00 calc
H(4)	Н	-0.0167	0.1338	-0.4477	0.0826	Uiso 1.00 calc
H(5)	н	0 2757	0 0875	-0 3948	0 0820	Uiso 1 00 calc
ц(б)	и Ц	0.1112	_0 5255	-0.2074	0.0020	
п(0)	п	0.1442	-0.3333	-0.3074	0.0704	UISO 1.00 Calc
H(/)	Н	-0.1436	-0.4986	-0.3589	0.0823	uiso 1.00 caic
H(8)	Η	0.4921	-0.1379	-0.3352	0.0792	Uiso 1.00 calc
Н(9)	Η	0.4212	0.0033	-0.2259	0.0877	Uiso 1.00 calc
H(10)	Η	0.5606	-0.1930	-0.2095	0.0877	Uiso 1.00 calc
H(11)	Η	0.2091	-0.2601	-0.1969	0.0838	Uiso 1.00 calc
H(12)	Н	0.3323	-0.0194	-0.1021	0.0998	Uiso 1.00 calc
н (13)	 Ц	0 1763	-0 2087	-0 0846	0 0998	Uiso 1 00 calc
п(13) п(14)	и Ц	0.1220	_0 2012	-0.0600	0.0000	
口(14) U(15)	п 	0.1229	-0.2912	-0.0090	0.1020	
н(15)	Н	0.2/02	-0.4/35	-0.0486	0.1028	uiso i.uu calc
H(16)	Η	0.2406	-0.0357	0.0239	0.1004	Uiso 1.00 calc
H(17)	Η	0.3866	-0.2197	0.0445	0.1004	Uiso 1.00 calc
H(18)	Η	0.0314	-0.2997	0.0594	0.1084	Uiso 1.00 calc
H(19)	Η	0.1743	-0.4904	0.0773	0.1084	Uiso 1.00 calc
H(20)	Н	0.1531	-0.0593	0.1549	0.1080	Uiso 1.00 calc
H(21)	н	0 3015	-0 2428	0 1717	0 1080	Uiso $1 00$ calc
エ (ムエ) エ (クウ)	П 11	0 0005	-0 2020	0 2520	0 1000	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
	п ,,	0.0000	-U.293U	0.2020	0.1227	$\begin{array}{c} \text{UISU I.UU CALC} \\ \text{UISU 1.00 CALC} \\ \end{array}$
H(23)	H	0.0983	-0.5201	U.2061	0.1227	ulso 1.00 calc
н(24)	H	-0.0506	-0.3377	0.1888	0.1227	uiso 1.00 calc

loop_ _atom_site_aniso_label

_atom_s	ite_aniso_U	_11				
_atom_s	ite_aniso_U	22				
_atom_s	ite_aniso_U	_33				
_atom_s	ite_aniso_U	12				
atom s	ite aniso U	13				
atom s	ite aniso U	23				
	0.125(2)	0.073(2)	0.089(2)	-0.004(2)	0.010(2)	0.004(2)
O(1)	0.071(2)	0.089(2)	0.077(2)	-0.001(2)	-0.011(1)	0.017(2)
N(1)	0.077(3)	0.070(2)	0.089(2)	-0.007(2)	-0.001(2)	-0.002(2)
C(1)	0 094(4)	0 0 89(4)	0 073(3)	0 010(3)	-0 014(3)	$0 \ 013(2)$
C(2)	0.091(1)	0.0000(1)	0.073(3)	-0 003(2)	-0 004(2)	-0 003(2)
C(2)	0.000(2)	0.063(3)	0.051(2)	-0.005(2)	-0.009(2)	0.003(2)
C(3)	0.000(2)	0.003(3)	0.030(2)	-0.003(2)	-0.000(2)	0.007(2)
C(4)	0.077(2)	0.060(2)	0.060(2)	-0.002(2)	-0.002(2)	-0.001(2)
C(5)	0.064(2)	0.059(2)	0.056(2)	-0.002(2)	-0.003(2)	-0.005(2)
C(6)	0.069(2)	0.060(3)	0.06/(2)	-0.006(2)	-0.004(2)	0.002(2)
C(7)	0.0/1(2)	0.06/(3)	0.064(2)	-0.004(3)	-0.004(2)	0.007(2)
C(8)	0.065(2)	0.066(2)	0.065(2)	-0.009(2)	-0.008(2)	0.003(2)
C(9)	0.071(3)	0.066(2)	0.065(3)	-0.011(2)	-0.007(2)	0.006(2)
C(10)	0.080(3)	0.066(3)	0.064(2)	-0.004(2)	-0.006(2)	-0.003(2)
C(11)	0.075(3)	0.074(2)	0.061(2)	0.001(2)	-0.007(2)	0.000(2)
C(12)	0.087(3)	0.089(4)	0.060(2)	0.009(3)	-0.010(2)	-0.009(2)
C(13)	0.095(3)	0.095(4)	0.061(2)	-0.007(3)	-0.007(2)	-0.010(2)
C(14)	0.095(3)	0.090(4)	0.062(2)	-0.005(3)	-0.008(2)	-0.009(2)
C(15)	0.082(3)	0.102(4)	0.069(2)	-0.005(3)	-0.003(2)	-0.013(2)
C(16)	0.097(4)	0.098(4)	0.068(2)	0.003(3)	-0.006(2)	-0.009(2)
C(17)	0 098(4)	0 142(6)	0 078(3)	-0 010(4)	0 020(3)	-0 014(3)
#						
"comput	ing data co	llection	'MSC	/AFC Diffract	ometer Cont	rol'
_comput	ing_call_re	finement	'MSC	AFC Diffract	cometer Cont	rol!
_comput	ing_cerr_re	duation	150 1+oV	Cap Vor 1 1		
_comput	ing_uata_ie	na salutian	CUE	.5all Vel. 1.1. TV006	L	
_comput	ing_structu	re_solution	SHE	LASO0		
			· Lex	san ver i i	J ·	
_comput	ing_structu					
_comput	ing_publica	tion_material	'teX	san Ver. 1.1	1 '	
_comput _comput	<pre>ing_structu ing_publica ing_molecul</pre>	tion_material ar_graphics	'teX ?	san Ver. 1.1	1'	
_comput _comput #	<pre>ing_structu ing_publica ing_molecul</pre>	tion_material ar_graphics	'teX ?	san Ver. 1.1	. .	
_comput _comput # _geom_s	<pre>ing_structu ing_publica ing_molecul pecial_deta</pre>	tion_material ar_graphics ils	'teX ?	san Ver. 1.1	. .	
_comput _comput # geom_s ;	<pre>ing_structu ing_publica ing_molecul pecial_deta</pre>	tion_material ar_graphics ils	'teX ?	san Ver. 1.1		
_comput _comput # _geom_s ; ?	<pre>ing_structu ing_publica ing_moleculpecial_deta</pre>	tion_material ar_graphics ils	'teX ?	san Ver. 1.1		
_comput _comput # _geom_s ; ;	ing_structu ing_publica ing_molecul pecial_deta	tion_material ar_graphics ils	'teX ?	san Ver. 1.1:	L' 	
_comput _comput # geom_s ; ; loop_	ing_structu ing_publica ing_molecul pecial_deta	tion_material ar_graphics ils	'teX ?	san Ver. 1.1:	L' 	
_comput _comput # geom_s ; ; loop_ _geom_b	<pre>ing_structu ing_publica ing_moleculpecial_deta ond_atom_si</pre>	tion_material ar_graphics ils te_label_1	'teX ?	san Ver. 1.1	L'	
_comput _comput # ; ; ; loop_ geom_b geom_b	<pre>ing_structu ing_publica ing_moleculpecial_deta ond_atom_si ond_atom_si</pre>	tion_material ar_graphics ils te_label_1 te_label_2	'teX ?	san Ver. 1.1	L '	
_comput _comput # geom_s ; ; loop_ geom_b geom_b geom_b	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc</pre>	tion_material ar_graphics ils te_label_1 te_label_2 e	'teX ?	san Ver. 1.1	L '	
_comput _comput # geom_s ; ; loop_ geom_b geom_b geom_b geom_b	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy</pre>	tion_material ar_graphics ils te_label_1 te_label_2 e mmetry 1	'teX ?	san Ver. 1.1	L '	
_comput _comput # geom_s ; ; loop_ geom_b _geom_b _geom_b _geom_b _geom_b _geom_b	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy</pre>	te_label_1 te_label_2 e mmetry_1 mmetry_2	'teX ?	san Ver. 1.1	L '	
_comput _comput # geom_s ; ; loop_ geom_b geom_b geom_b geom_b geom_b geom_b geom_b geom_b	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl</pre>	te_label_1 te_label_2 e mmetry_1 mmetry_2 ag	'teX ?	san Ver. 1.1:	L '	
_comput _comput # geom_s ; ; loop_ geom_b geom_b geom_b geom_b geom_b geom_b geom_b f(1)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_site_sy ond_publ_fl C(9)</pre>	te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6)	'teX ? ves	san Ver. 1.1:	L '	
_comput _comput # geom_s ; ; loop_ geom_b geom_b geom_b geom_b geom_b geom_b f(1) F(1)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_site_sy ond_publ_fl C(9) C(11)</pre>	te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10)	tex ? yes ves	san Ver. 1.1:	L '	
_comput _comput # geom_s ; ; loop_ geom_b geom_b geom_b geom_b geom_b geom_b f(1) F(1) O(1)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1)</pre>	te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9)	· yes	san Ver. 1.1:	L '	
comput comput # geom_s ; ; loop_ geom_b geom_b geom_b geom_b geom_b geom_b f(1) F(1) O(1) O(1)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2)</pre>	te_label_1 te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9) 1.385(6)	· yes . yes . yes	san Ver. 1.1:	L '	
comput comput # _geom_s ; ; loop_ _geom_b _geom_b _geom_b _geom_b _geom_b _geom_b F(1) F(1) O(1) O(1) N(1)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(2) C(2) C(2)</pre>	te_label_1 te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9) 1.385(6) 1.118(9)	· . yes yes yes yes yes yes	san Ver. 1.1:	L '	
comput comput comput # geom_s ; ; loopgeom_b geom_b	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(3)</pre>	te_label_1 te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9) 1.385(6) 1.118(8) 1.376(2)	· · yes · · yes · · yes · · yes · · yes · · yes · · yes	san Ver. 1.1:	L '	
comput comput comput # geom_s; ; loopgeom_b geom_b	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(3) C(7)</pre>	te_label_1 te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9) 1.385(6) 1.118(8) 1.376(8) 1.376(8)	· · yes · · yes	san Ver. 1.1:	L '	
_comput _comput _comput # _geom_s; ; loop_ _geom_b	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(3) C(7) C(4)</pre>	te_label_1 te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9) 1.385(6) 1.118(8) 1.376(8) 1.372(8) 1.402(8)	<pre>'tex 'tex ? 'tex ?</pre>	san Ver. 1.1	L '	
_comput _comput _comput # _geom_s; ; loop_ _geom_b _geom_b _geom_b _geom_b _geom_b _geom_b F(1) F(1) O(1) N(1) C(2) C(2) C(3)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(3) C(7) C(4) C(4)</pre>	te_label_1 te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9) 1.385(6) 1.118(8) 1.376(8) 1.372(8) 1.403(7) 1.407(7)	<pre>'tex 'tex ? 'tex ?</pre>	san Ver. 1.1:	L '	
_comput _comput _comput # _geom_s; ; loop_ _geom_b _geom_b _geom_b _geom_b _geom_b _geom_b F(1) F(1) O(1) N(1) C(2) C(2) C(3) C(4)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(3) C(7) C(4) C(5)</pre>	te_label_1 te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9) 1.385(6) 1.118(8) 1.376(8) 1.372(8) 1.403(7) 1.367(8)	<pre>'tex 'tex ? 'tex ?</pre>	san Ver. 1.1:	L '	
_comput _comput _comput # _geom_s; ; loop_ _geom_b _geom_b _geom_b _geom_b _geom_b _geom_b F(1) F(1) O(1) N(1) C(2) C(2) C(3) C(4) C(5)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(1) C(2) C(9) C(3) C(7) C(4) C(5) C(6)</pre>	te_label_1 tion_material ar_graphics 	<pre>'tex 'tex ? 'tex ?</pre>	san Ver. 1.1:	L '	
_comput _comput _comput # _geom_s; ; loop_ _geom_b _geom_b _geom_b _geom_b _geom_b _geom_b F(1) F(1) O(1) N(1) C(2) C(2) C(3) C(4) C(5) C(5)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(1) C(2) C(9) C(3) C(7) C(4) C(5) C(6) C(8)</pre>	te_label_1 tion_material ar_graphics 	<pre>'tex 'tex ? 'tex ?</pre>	san Ver. 1.1:	L '	
_comput _comput _comput # _geom_s; ; loop_ _geom_b _geom_b _geom_b _geom_b _geom_b _geom_b F(1) F(1) O(1) O(1) N(1) C(2) C(2) C(3) C(4) C(5) C(5) C(6)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(11) C(2) C(9) C(3) C(7) C(4) C(5) C(6) C(8) C(7)</pre>	te_label_1 tion_material ar_graphics 	<pre>'tex 'tex ? 'tex ?</pre>	san Ver. 1.1	L '	
_comput _comput _comput # _geom_s; ; loop_ _geom_b _geom_b _geom_b _geom_b _geom_b _geom_b F(1) F(1) O(1) O(1) N(1) C(2) C(2) C(3) C(4) C(5) C(5) C(6) C(8)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(1) C(2) C(9) C(3) C(7) C(4) C(5) C(6) C(8) C(7) C(9)</pre>	te_label_1 tion_material ar_graphics 	<pre>'tex 'tex ? 'tex ?</pre>	san Ver. 1.1	L '	
_comput _comput _comput # _geom_s; ; loop_ _geom_b _geom_b _geom_b _geom_b _geom_b _geom_b F(1) F(1) O(1) O(1) N(1) C(2) C(2) C(3) C(4) C(5) C(5) C(6) C(8) C(8) C(8)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(11) C(2) C(9) C(3) C(7) C(4) C(5) C(6) C(6) C(8) C(7) C(9) C(10)</pre>	te_label_1 tion_material ar_graphics ils te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9) 1.385(6) 1.118(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.399(7) 1.463(9) 1.538(7)	<pre>'tex 'tex ? 'tex ?</pre>	san Ver. 1.1	L '	
_comput _comput _comput # _geom_b _geom_b _geom_b _geom_b _geom_b _geom_b _geom_b _geom_b F(1) F(1) O(1) N(1) C(2) C(2) C(3) C(4) C(5) C(5) C(6) C(8) C(8) C(10)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(11) C(2) C(9) C(3) C(7) C(4) C(5) C(6) C(8) C(7) C(9) C(10) C(11)</pre>	te_label_1 te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9) 1.385(6) 1.118(8) 1.376(8) 1.399(7) 1.463(9) 1.538(7) 1.493(8)	 yes 	san Ver. 1.1:	L '	
comput comput comput # geom_b geo(1) c(2) c(3) c(5) c(8) c(10)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(11) C(2) C(4) C(5) C(6) C(6) C(7) C(4) C(5) C(6) C(7) C(9) C(10) C(11) C(12)</pre>	te_label_1 tion_material ar_graphics ils te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9) 1.385(6) 1.118(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.399(7) 1.463(9) 1.538(7) 1.493(8) 1.516(8)	 yes 	san Ver. 1.1	L '	
_comput _comput _comput # _geom_b _geom_b _geom_b _geom_b _geom_b _geom_b _geom_b F(1) F(1) O(1) O(1) N(1) C(2) C(2) C(3) C(4) C(5) C(5) C(6) C(6) C(8) C(10) C(11) C(12)	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(11) C(2) C(4) C(5) C(6) C(6) C(7) C(4) C(5) C(6) C(7) C(9) C(10) C(11) C(12) C(13)</pre>	te_label_1 te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9) 1.385(6) 1.118(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.399(7) 1.463(9) 1.538(7) 1.493(8) 1.516(8) 1.527(9)	 yes 	san Ver. 1.1	L '	
comput comput comput # geom_b geo	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(11) C(2) C(9) C(3) C(7) C(4) C(5) C(6) C(8) C(7) C(9) C(10) C(11) C(12) C(13) C(14)</pre>	te_label_1 te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9) 1.385(6) 1.118(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.540(8) 1.538(7) 1.493(8) 1.516(8) 1.527(9) 1.522(8)	 yes 	san Ver. 1.1	L '	
comput comput comput # geom_b geo	<pre>ing_structu ing_publica ing_moleculpecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_publ_fl C(9) C(11) C(2) C(9) C(3) C(7) C(4) C(5) C(6) C(8) C(7) C(9) C(10) C(10) C(11) C(12) C(13) C(14) C(15)</pre>	te_label_1 te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9) 1.385(6) 1.118(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.540(8) 1.538(7) 1.493(8) 1.516(8) 1.522(8) 1.516(9)	<pre>'tex 'tex ? 'tex ?</pre>	san Ver. 1.1	L '	
comput comput comput # geom_b geo	<pre>ing_structu ing_publica ing_molecul pecial_deta ond_atom_si ond_atom_si ond_distanc ond_site_sy ond_publ_fl C(9) C(11) C(1) C(2) C(9) C(11) C(2) C(9) C(3) C(7) C(4) C(5) C(6) C(8) C(7) C(9) C(10) C(11) C(12) C(12) C(13) C(14) C(15) C(16)</pre>	te_label_1 te_label_1 te_label_2 e mmetry_1 mmetry_2 ag 2.872(6) 1.375(10) 1.417(9) 1.385(6) 1.118(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.367(8) 1.367(8) 1.376(8) 1.376(8) 1.376(8) 1.376(8) 1.540(8) 1.538(7) 1.493(8) 1.516(8) 1.522(8) 1.516(9) 1.503(8)	 yes 	san Ver. 1.1:	L '	

#				
" loop				
geom and	le atom si	te label 1		
geom and	gle_atom_si	te label 2		
_geom_ang	gle_atom_si	te_label_3		
_geom_ang	gle –			
_geom_ang	gle_site_sy	mmetry_1		
_geom_ang	gle_site_sy	mmetry_2		
_geom_ang	gle_site_sy	mmetry_3		
_geom_ang	Jle_publ_fl	ag	117 0/5	
C(1)	O(1)	C(2)	123 5 (5	
O(1)	C(2)	C(3)	115 3 (5	5 $\cdot \cdot \cdot$
C(3)	C(2)	C(7)	121.2(5	\overline{b}
C(2)	C(3)	C(4)	118.8(5	b) ves
C(3)	C(4)	C(5)	121.1(5	5) yes
C(4)	C(5)	C(6)	118.7(5	5) yes
C(4)	C(5)	C(8)	120.0(5	5) yes
C(6)	C(5)	C(8)	121.2(5	b) yes
C(5)	C(6)	C (7)	121.5(5) yes
C(2)	C(7)	C(6)	111 2/5	b) yes
C(5)	C (8)	C(9)	112 5(5	$()$ \dots yes
C(9)	C(8)	C(10)	112.6(5	\overline{b}
C(9)	F(1)	C(11)	89.4(4)	ves
N(1)	C(9)	C(8)	178.9(7	7) yes
C(8)	C(10)	C(11)	117.5(5	5) yes
F(1)	C(9)	N(1)	101.6(5	5) yes
F(1)	C(9)	C(8)	79.2(4)	yes
F(1)	C(11)	C(10)	109.6(5) yes
F(1)	C(11)	C(12)	112 6(5	b) yes
C(10)	C(11)	C(12)	112.0(5	5 $\cdot \cdot \cdot$
C(11) C(12)	C(12) C(13)	C(14)	112.9(5	5 yes
C(13)	C(14)	C(15)	113.7(6	5) yes
C(14)	C(15)	C(16)	114.7(6	5) yes
C(15)	C(16)	C(17)	113.9(7	7) yes
#				
loop_			1	
_geom_tor	sion_atom_	site_label	$-\frac{1}{2}$	
_geom_tor	sion_atom_	site label	_2	
_geom_tor	sion_atom_	site label	_4	
geom tor	rsion_accim_			
geom tor	sion site	symmetry 1		
_geom_tor	rsion_site_	symmetry_2		
_geom_tor	sion_site_	symmetry_3		
_geom_tor	sion_site_	symmetry_4		
_geom_tor	sion_publ_	ilag	C(0)	6.7/5)
F(1)	C(11)	C(8)	C(9)	-6.7(5) Yes
エ (エ) 下 (1)	C(11)	C(12)	C(0)	-59.4(7) yes
0(1)	C(2)	C(3)	C(4)	179.2(5) ves
0(1)	C(2)	C(7)	C(6)	-179.9(5) yes
N(1)	C(9)	C(8)	C(5)	53(34) yes
N(1)	C(9)	C(8)	C(10)	-179(33) yes
C(1)	0(1)	C(2)	C(3)	0.5(8) yes
C(1)	0(1)	C(2)	C(7)	1/9.2(5) yes
C(2)	C(3)	C(4)	C(5)	-1./(8) yes
C(2)	C(1)	C(0)	C(5)	2.0(0) Yes
C(3)	C(2)	C(5)	C(6)	1.0(0) Yes
C(3)	C(4)	C(5)	C(8)	179.7(5) ves
C(4)	C(3)	C(2)	C(7)	0.6(8) yes
C(4)	C(5)	C(6)	C(7)	-4.1(8) yes
C(4)	C(5)	C(8)	C(9)	-133.2(6) yes
C(4)	C(5)	C(8)	C(10)	99.3(6) yes

C(5)	C(8)	C(10)	C(11)	58.0(7)	yes	
C(6)	C(5)	C(8)	C(9)	42.9(7)	yes	
C(6)	C(5)	C(8)	C(10)	-84.6(7)	yes	
C(7)	C(6)	C(5)	C(8)	179.7(5)	yes	
C(8)	C(10)	C(11)	C(12)	-179.6(5)	yes	
C(9)	C(8)	C(10)	C(11)	-68.8(7)	yes	
C(10)	C(11)	C(12)	C(13)	178.8(5)	yes	
C(11)	C(12)	C(13)	C(14)	-178.0(5)	yes	
C(12)	C(13)	C(14)	C(15)	-179.4(6)	yes	
C(13)	C(14)	C(15)	C(16)	178.6(6)	yes	
C(14)	C(15)	C(16)	C(17)	-177.2(6)	yes	
C(14)	C(15)	C(16)	C(17)	-177.2(6)	yes	
#						
loop						
geom con	tact atom	site label	1			
geom con	itact_atom	site label	2			
geom con	tact dista	ance	-			
geom con	tact site	symmetry 1				
geom con	tact site	symmetry 2				
geom con	tact publ	flag				
F(1)	C(9)	2.872(6)	?			
0(1)	C(9)	3.477(7)	. 1 455	?		
0(1)	C(8)	3.537(7)	. 1 455	?		
N(1)	C(8)	3.405(9)	. 1 545	?		
N(1)	C(10)	3.447(8)	. 1 545	?		
N(1)	C(4)	3.525(8)	. 1 545	; ?		
#						
#						