Electronic Supplementary Information

S1 Variation of emission intensity at 618nm for [EugDO3A]³⁻ and [EuaDO3A]³⁻ in the presence of a simulated extracellular anionic background (298K). The observed inflection above pH 7.5 corresponds to the onset of binding by carbonate, displacing the water molecules that quench the Eu excited state.

Exchange lifetime t_M

Measurements of the transverse ¹⁷O relaxation time at variable temperature.

S2 Variation of the transverse 17-O relaxation rate of water as a function of temperature, showing the (Swift-Connick) fit to the experimental data (2.1T, pH = 7).

S3 Variation of the relaxivity of $[GdaDO3A]^{3-}$ with pH (293K) in a simulated extracellular ionic background (triangles) and in human serum solution.

1 mM Gd complex 1 mM $ZnCl_2$ pH = 7.0 in phosphate buffer ([KH₂PO₄] =0.026 mol/L, [Na₂HPO₄] = 0.041mol/L).

Laurent S. and co-worker Investigative Radiology 2001, 36, 115.

Thermodynamic (T.I.) and kinetic (K.I.) index

Complex	Т.І.	K.I.
GdaDO3A	0.69	2760
GdgDO3A	0.95	¥
GdaDOTA	0.99	¥
GdDOTA	0.99	¥
GdDTPA	0.49	260

T.I. $R_{1p}(3 \text{days})/R_{1p}(0)$; **S.I.** Time for $R_{1p}(t)/R_{1p}(0) = 0.80$

S4 and S-5 Empirical screen of complex stability by monitoring the change in the relaxivity of the stated Gd complexes as a function of time, following the methods of Laurent and Muller. Note the high kinetic and thermodynamic stability indices with respect to [GdDTPA]²⁻