Direct Organocatalytic Aldol Reactions in Buffered Aqueous Media

Armando Córdova, Wolfgang Notz, and Carlos F. Barbas III*

The Skaggs Institute for Chemical Biology and the Department of Molecular Biology, The Scripps Research Institute. 10550 N. Torrey Pines Rd., La Jolla, California 92037, U.S.A.

Supporting Information

General. Chemicals and solvents were either purchased *puriss p.A.* from commercial suppliers or purified by standard techniques. For thin-layer chromatography (TLC), silica gel plates Merck 60 F254 were used and compounds were visualized by irradiation with UV light and/ or by treatment with a solution of phosphomolybdic acid (25g), Ce(SO₄)₂•H₂O) (10g), conc. H₂SO₄ (60 mL), and H₂O (940 mL) followed by heating or by treatment with a solution of *P*-anisaldehyde (23 mL), conc. H₂SO₄ (35 mL), acetic acid (10 mL), and ethanol (900 mL) followed by heating. Flash chromatography was performed using silica gel Merck 60 (particle size 0.040-0.063 mm), ¹H NMR and ¹³C NMR spectra were recorded on Bruker AMX 300, AMX 250, AMX 500 and AMX 400 instruments. The chemical shifts are given in δ relative to TMS ($\delta = 0$ ppm). The spectra were in CDCl₃ and CD₃OD at room temperature. High-resolution mass spectra were recorded on an Ion Spec Fourier Transform Mass Spectrometer using dihydrobenzoic acid (DHB) as the matrix. HPLC was carried out using a Hitachi organizer consisting of a D-2500 Chromato-Integrator, a L-4000 UV-Detector, and a L-6200A Intelligent Pump.

General procedure for direct aldol reactions with acetone and 4-nitrobenzaldehyde:

In a typical experiment, 4-nitrobenzaldehyde (1.0 mmol) was added to the aqueous solution (8 mL), acetone (2 mL) was added to obtain a total volume of 10 mL, followed by catalyst (20 mol %) and the mixture was stirred for 24-48h at room temperature. Following aqueous work-up with half-saturated ammonium chloride solution and extraction with ethyl acetate, the organic layer was dried (MgSO₄), filtered and concentrated. ¹H NMR analyses determined the conversion and the ratio between aldol product **1** and dehydration product **2**. Furthermore, HPLC analysis was also performed by injecting an aliquot (5 μ L) of the reaction mixture to a RP-C18 Vydac HPLC column (HPLC conditions: acetonitrile:water-25:75 with 0.1% TFA, λ = 254 nm and flow rate = 1.0 mL/min). The ee of **1** derived from the L-proline-, **6**- and **11**-catalyzed reactions was determined by Chiral-phase HPLC (Daicel Chiralpak AD, hexane:i-Pr-80:20, ν = 1.0 mL/min, λ = 254 nm); t_R (major) = 19.87 min; t_R (minor) = 21.54.

Table 1S. Study of the direct catalytic aldol reactions of acetone with p-nitrobenzaldehyde with primary and secondary amines.

O₂N	$\begin{array}{c} O \\ H \\$					
	N H OMe	(<i>L</i>)-Tyr, Gly, (<i>L</i>)	Phe N			
_	11	21	H 22	6	9	
	Entry	Conditions	Catalyst	Time (h)	1 ^a	2 ^a
	1	PBS ^b	L-Proline	24	99%	trace
	2	PBS ^b	11	24	75%	15%
	3	PBS ^b	none	24	trace	0%
	4	PBS ^b	21	48	<10%	0%
	5	PBS ^b	22	48	<10%	0%
	6	PBS ^b	6	24	64%	36%
	7	water	6	24	81%	19%
	8	PBS ^b	9	24	94%	6%
	6 7 8	PBS ^b water PBS ^b	6 6 9	24 24 24	64% 81% 94%	36% 19% 6%

 a Conversion as determined by 1H NMR and reverse phase HPLC after extractive workup. b 0.1 equiv SDS used.

NaCN inhibition of the proline-catalyzed aldol reaction with acetone and 4-nitrobenzaldehyde:

4-Nitrobenzaldehyde (1.0 mmol) and SDS (0.1 mmol) was added to the PBS solution (8 mL), acetone (2 mL) was added to obtain a total volume of 10 mL, followed by L-proline (20 mol %) and NaCN (40 mol%) and the mixture was stirred for 24h at room temperature. HPLC analysis was performed and confirmed that only trace amounts of **1** and no elimination product **2** was formed.

Procedure for the synthesis of 1, 3, 4-Trihydroxy-4-(4-nitrophenyl)-2-butanone (10):

In a typical experiment, 4-nitrobenzaldehyde (1.0 mmol) was added to the aqueous solution (8 mL), dihydroxyacetone (0.1 mol) was added, followed by catalyst (25 mol %) and the mixture was stirred for 2-48h at room temperature. Following aqueous work-up with half-saturated ammonium chloride solution and extraction with ethyl acetate, the organic layer was dried (MgSO₄), filtered and concentrated and the residue purified by column chromatography (silica, hexanes:ethyl acetate-1:10) to afford the corresponding aldol product **10**.

1, 3, 4-Trihydroxy-4-(4-nitrophenyl)-2-butanone 10:

¹H NMR (500 MHz, CD₃OD): (1:1 mixture of diastereomers) δ = 4.12 (d, 1H, J = 19.4 Hz), 4.25 (d, 1H, J = 5.8 Hz), 4.30 (d, 1H, J = 2.6 Hz), 4.44 (d, 1H, J = 19.4 Hz), 4.48 (d, 2H, J = 4.0 Hz), 4.86 (d, 1H, J = 19.4 Hz), 4.48 (d, 2H, J = 4.0 Hz), 4.86 (d, 1H, J = 4.0 Hz), 4.86 (d, 1H, J = 4.0 Hz), 4.86 (d, 2H, J = 4.0 Hz),

5.9 Hz), 5.15 (d, 1H, J = 2.20 Hz), 7.53 (d, 2H, J = 8.4 Hz, ArH), 7.60 (d, 2H, J = 8.4 Hz, ArH), 8.12 (m, 4H, ArH); ¹³C NMR (125 MHz): $\delta = 212.6$, 212.1, 150.9, 150.2, 148.9, 148.7, 129.3, 128.7, 124.1, 124.0, 80.7, 79.7, 75.4, 74.7, 68.3, 68.2. HRMS calcld for C₁₀H₁₁NO₆ (M+Na⁺) calcld 264.0479, found 264.0485 Da.

Procedure for the cross-aldol reactions with dihydroxy acetone:

In a typical experiment, aldehyde (1.0 mmol) was added to a 1:1 mixture of PBS buffer and DMSO (10 mL), dihydroxyacetone (0.1 mol) was added, followed by catalyst **6** (25 mol %) and the mixture was stirred for 24-48h at room temperature. Following aqueous work-up with half-saturated ammonium chloride solution and extraction with ethyl acetate, the organic layer was dried (MgSO₄), filtered and concentrated and the residue purified by column chromatography (silica, hexanes:ethyl acetate-1:10) to afford the corresponding aldol products.

1, 3, 4-Trihydroxy-4-O-benzyl-2-pentanone 17:

¹H NMR (500 MHz, CD₃OD): δ = 3.59 (m, 1H), 3.71 (m, 1H), 4.18 (m, 1H), 4.38 (bs, 1H), 4.39-4.60 (m, 2H, 4.95 (s, 2H, OCH₂Ph), 7.41 (5H, Ar*H*); ¹³C NMR (125 MHz): δ = 212.6, 138.6, 128.4, 127.9, 127.7, 76.2, 73.3, 71.1, 70.6, 66.9 HRMS calcld for C₁₂H₁₆O₅ (M+Na⁺) calcld 263.089, found 263.0889 Da.

1, 3, 4-Trihydroxy-4-phenyl-2-butanone 18:

¹H NMR (500 MHz, CD₃OD): (1:1 mixture of diastereomers) $\delta = 4.00$ (d, 1H, J = 19.1 Hz), 4.22 (s, 1H), 4.25 (d, 1H, J = 5.9 Hz), 4.37 (d, 1H, J = 1.8 Hz), 4.39 (d, 2H, J = 19.4 Hz) 4.87 (d, 1H, J = 5.9 Hz), 4.95(d, 1H, J = 2.9 Hz), 7.53 (m, 10H, Ar*H*); ¹³C NMR (125 MHz): $\delta = 213.1, 212.4, 142.8, 142.2, 129.2, 129.1, 128.8, 128.5, 128.3, 127.6, 81.0, 80.0, 76.3, 75.6, 68.2, 68.1. HRMS calcld for C₁₀H₁₂O₄ (M+Na⁺) calcld 219.0628, found 219.0629 Da.$

1, 3, 4-Trihydroxy-4-cyclohexyl-2-butanone 19:

¹H NMR (500 MHz, CD₃OD): δ = 1.05-1.39 (m, 4H), 1.6-1.84 (m, 6H), 2.15 (m, 1H), 3.59 (d, 1H, *J* = 9.2 Hz), 4.39 (d, 1H, *J* = 5.9 Hz), 4.57 (q, 2H, *J* = 33.0 Hz, *J* = 19.07 Hz); ¹³C NMR (125 MHz): δ = 213.7, 77.1, 76.2, 66.9, 65.8, 40.0, 29.6, 29.3, 26.5, 26.1, 26.08 HRMS calcid for C₁₀H₁₈O₄ (M+Na⁺) calcid 225.1097, found 225.1100 Da.

1, 3, 4-Trihydroxy-5, 6-O-isopropylidene-2-hexanone 20:

¹H NMR (500 MHz, CD₃OD): (1:1 mixture of diastereomers) δ = 1.25 (bs, 6H), 1.31 (bs, 6H), 3.29 (bs, 1H), 3.77 (m, 2H), 3.86 (m, 2H), 3.94 (m, 2H), 3,99 (m, 2H), 4.08 (m, 1H), 4.22 (bs, 2H), 4,32 (s, 1H), 4.39 (q, 2H); ¹³C NMR (125 MHz): δ = 211.56, 108.0, 97.1, 76.6, 76.3, 74.6, 73.7, 71.9, 65.5, 64.5, 64.3, 24.6, 24.3, 24.2, 23.02. HRMS calcld for C₉H₁₆O₆ (M+Na⁺) calcld 243.0839, found 243.0844 Da.

¹H NMR (500 MHz, CD₃OD) of **10**.

¹³C NMR (CD₃OD) of **10**.

¹H NMR (500 MHz, CD₃OD) of **17**.

¹³C NMR (500 MHz, CD₃OD) of **17**.

¹H NMR (500 MHz, CD₃OD) of **18**.

¹³C NMR (500 MHz, CD₃OD) of **18**.

¹H NMR (500 MHz, CD₃OD) of **19**.

¹³C NMR (500 MHz, CD₃OD) of **19**.

¹H NMR (500 MHz, CD₃OD) of **20**.

¹³C NMR (125 MHz, CD₃OD) of **20**.

