Supplementary Information For

A New Bis(imidazolyl)(alkylthiolate) Tripodal Ligand and the Spontaneous Formation of a Disulfide-Linked, Hydroxo-Bridged Dinuclear Zinc Complex

Vivek V. Karambelkar, Divya Krishnamurthy, Charlotte L. Stern, Lev N. Zakharov, Arnold L. Rheingold, and David P. Goldberg*

Experimental Section

4,5-diphenylimidazole² were prepared according to literature procedures. Commercially available reagents were used as received. Column chromatography was performed with Natland International Corp. silica gel 60, 200-400 mesh. ¹H NMR spectra in CDCl₃ were recorded on a Varian Unity Plus 400 spectrometer (400 MHz) at ambient probe temperature with tetramethylsilane as the internal reference, whereas ¹H NMR spectra in CD₃CN and ¹³C NMR spectra in CDCl₃ were recorded with the solvent peak as the internal reference. Mass spectra were recorded at the Mass Spectrometry Laboratory, Department of Chemistry, The Johns

Hopkins University, using a VG-70-S mass spectrometer. Elemental analyses were recorded at

General Procedures: Methyl 2-(tetrahydropyran-2-ylthio)-2-methylpropionate¹ and N-methyl-

The synthesis of **1** was carried out according to Scheme S1:

Atlantic Microlab, Inc., Norcross, GA.

S1

Scheme S1

2-Methyl-1,1-bis-(1-methyl-4,5-diphenyl-1*H*-imidazol-2-yl)-2-(tetrahydro-pyran-2-

ylsulfanyl)-propan-1-ol (I): *N*-methyl-4,5-diphenylimidazole (14.0 g, 0.06 mol) in dry THF (100 mL) was added to n-BuLi (37.6 mL, 1.60 M in hexanes, 0.06 mol) in dry Et₂O (100 mL) at –78 °C under argon. The resulting orange-red solution was stirred at –78 °C for 1 h, and allowed to warm slowly to room temperature. To this solution methyl 2-(tetrahydropyran-2-ylthio)-2-methylpropionate (6.6 g, 0.03 mol) in dry THF (80 mL) was added dropwise. The resulting dark red reaction mixture was stirred at room temperature for 40 h to give a yellow solution and then refluxed for 2 h at 60 °C. The resulting orange solution was then cooled to room temperature, quenched with deionized water (150 mL) and extracted with Et₂O (2 x 150 mL). The organic layers were washed with deionized water (200 mL) and dried over Na₂SO₄. Removal of Et₂O

under reduced pressure gave **I** as a foamy solid (21.4 g), which was used in the next step without further purification. Analytical data were obtained after silica gel chromatography (MeOH/CH₂Cl₂ 5% v/v). 1 H NMR (400 MHz, CDCl₃): δ 7.53-7.10 (m, 20H, C₆H₅), 5.86 (s, 1H, OH), 4.6-4.5 (br, 1H, O-C(H)-S), 4.08-4.04 (m, 1H, S-C-CH₂), 3.48-3.41 (m, 1H, S-C-CH₂), 3.08 (s, 3H, N-CH₃), 3.05 (s, 3H, N-CH₃), 2.12 (s, 3H, C-CH₃), 2.02 (s, 3H, C-CH₃), 1.85-1.34 (m, 6H, THP). FAB-MS: m/z 655.4 ([M+H]⁺, calcd. 655.3).

1-Methoxy-2-methyl-1,1-bis-(1-methyl-4,5-diphenyl-1*H*-imidazol-2-yl)-2-(tetrahydro-

pyran-2-ylsulfanyl)-propane (II): Sodium hydride (1.70 g, 60% mineral oil suspension, 0.04 mol) was washed with anhydrous hexane and suspended in anhydrous DMF (50 mL) under argon. Crude I (20.4 g, 0.03 mol) was dissolved in anhydrous DMF (100 mL) to give an orangebrown solution which was added dropwise to the NaH suspension over 45 minutes and the resulting mixture was stirred for 0.5 h at room temperature. Methyl iodide (2.64 mL, 0.04 mol) was added dropwise and the reaction mixture was stirred for 24 h and then quenched by the addition of deionized water (200 mL), resulting in a white precipitate. The precipitate was dissolved by the addition of methylene chloride (200 mL) and then the organic layer was separated and dried over Na₂SO₄. The volatile solvents were removed under reduced pressure giving a brown oil. Residual amounts of DMF were removed by heating the brown oil to 140 °C under vacuum for 2 h, affording **II** as a yellow solid (18.86 g) which was used in the next step without further purification. Analytical data were obtained after silica gel chromatography (MeOH/CH₂Cl₂ 5% v/v). ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.10 (m, 20H, C₆H₅), 4.02 (br, 2H, THP), 3.72 (br, 1H, THP), 3.28 (br, 6H, N-CH₃), 2.74 (br, 3H, O-CH₃), 2.32 (br, 3H, C-CH₃), 2.23 (br, 3H, C-CH₃), 1.74-1.46 (m, 6H, THP). FAB-MS: m/z 669.4 ([M+H]⁺, calcd. 669.3).

1-Methoxy-2-methyl-1,1-bis-(1-methyl-4,5-diphenyl-1*H***-imidazol-2-yl)-propane-2-thiol (1**, L^{Im₂SH}): Crude **II** (3.0 g) was dissolved in 95% trifluoroacetic acid (TFA) (30 mL) and heated to 80 °C under argon for 1.5 h. The reaction mixture was cooled to room temperature and stirred for 24 h, and then the TFA was removed under reduced pressure. The resulting dark viscous oil was dissolved in benzene (250 mL), extracted with aq. NaOH (100 mL, 2 M), and the organic layer was dried over Na₂SO₄. Benzene was removed under reduced pressure to give a brown solid. Pure **1** was obtained after flash chromatography on silica gel (MeOH/CH₂Cl₂ 1% v/v) as a pale yellow crystalline solid (0.7 g, 27%). ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.11 (m, 20H C₆H₅), 4.3 (br, 1H, SH), 3.53 (s, 6H, N-CH₃), 2.80 (br, 3H, O-CH₃), 1.60 (s, 6H, C-CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 145.3, 134.9, 131.5, 131.3, 130.4, 129.2, 128.9, 128.2, 126.7, 126.2, 85.5, 56.0, 54.5, 34.0, 31.7, 29.5. Anal. Calcd. for C₃₇H₃₆N₄OS: C, 76.00; H, 6.21; N, 9.58. Found C, 75.36; H, 6.33; N, 9.45. FAB-MS: m/z 585.3 ([M+H]*, calcd. 585.3).

(L^{Im₂S})ZnCH₃ (2): An amount of 1 (204 mg, 0.35 mmol) was dissolved in anhydrous toluene (5 mL) and transferred to a solution of Zn(CH₃)₂ (250 μL, 2.0 M in toluene, 0.50 mmol) in anhydrous toluene (3 mL) under argon. A white solid precipitated by the time the addition was over. The reaction mixture was stirred under argon for 3 h. The white solid was filtered in air, washed with Et₂O and dried under vacuum (199 mg, 86%). ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.17 (m, 20H C₆H₅), 3.87 (s, 6H, N-CH₃), 3.57 (s, 3H, O-CH₃), 1.64 (s, 6H, C-CH₃), -1.31 (s, 3H, Zn-CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 145.0, 131.6, 131.4, 129.4, 129.3, 129.2, 127.9, 127.5, 92.9, 56.3, 54.7, 35.4, 32.3, -13.0. FAB-MS: m/z 685.3 ([M+Na]⁺, calcd. 685.2).

[(L^{Im}_2S)₂**Zn**] (3): An amount of 2 (31 mg, 0.05 mmol) was suspended in anhydrous toluene (3 mL), to which deionized water (25 μL, 1.4 mmol) was added. The reaction mixture was stirred at room temperature under argon for 6 days at which point the volatiles were removed under reduced pressure to give 3 as a white powder (27 mg, 94%). ¹H NMR (400 MHz, CDCl₃): δ 7.53-6.81 (m, 40H C₆H₅), 3.87 (s, 6H, N-CH₃), 2.95 (s, 6H, N-CH₃), 2.62 (s, 6H, C-CH₃), 2.57 (s, 6H, O-CH₃), 2.06 (s, 6H, C-CH₃). FAB-MS: m/z 1231.4 ([M+H]⁺, calcd. 1231.4).

[(L^{Im₂S})₂Zn₂(OH)(CH₃CN)₂](BF₄)₃ (4): An amount of 2 (71 mg, 0.11 mmol) was suspended in acetonitrile (3 mL) to which HBF₄ (26.6 μL, 50% by wt. in water, 0.21 mmol) was added under an argon atmosphere. The solution instantaneously became clear, and was stirred for 24 h at room temperature. The volatiles were removed under reduced pressure to give a glassy, yellow solid. Colorless crystals of 4 were obtained in air from a CH₃CN/Et₂O solution (62 mg, 70%). ¹H NMR (400 MHz, CD₃CN): δ 7.54-6.62 (m, 40H C₆H₅), 3.95 (s, 12H, N-CH₃), 3.56 (s, 6H, O-CH₃), 1.79 (s, 6H, C-CH₃), 1.54 (s, 6H, C-CH₃). Anal. Calcd. for C₈₀H₈₀ B₃F₁₂N₁₁O₃S₂Zn₂ (4•CH₃CN): C, 56.56; H, 4.74; N, 9.07. Found C, 56.08; H, 4.89; N, 9.32.

[(L^{Im}₂S)₂Zn₂(OH)(CH₃CN)₂](CF₃SO₃)₃ (5): An amount of 2 (46 mg, 0.07 mmol) was suspended in acetonitrile (3 mL) to which CF₃SO₃H (12.3 μL, 0.14 mmol) was added under an argon atmosphere. Upon addition of the acid, the suspension cleared. The reaction mixture was stirred for 24 h, and the volatiles were removed under reduced pressure to give a glassy, yellow solid. Colorless crystals of 5 were obtained in air from a CH₃CN/Et₂O solution (45 mg, 63%). ¹H NMR (400 MHz, CD₃CN): δ 7.53-6.62 (m, 40H, C₆H₅), 3.95 (s, 12H, N-CH₃), 3.56 (s, 6H, O-CH₃),

 $1.79 \ (s, 6H, C-CH_3), \ 1.54 \ (s, 6H, C-CH_3). \ Anal. \ Calcd. \ for \ C_{82}H_{78}N_{10}O_{15}S_6F_{12}Zn_2 \ (\textbf{5}\bullet CF_3SO_3H): \\ C, 49.38; \ H, 3.94; \ N, 7.02. \ Found \ C, 49.70; \ H, 4.13; \ N, 7.30.$

References:

- J. M. Downes, J. Whelan and B. Bosnich *Inorg. Chem.* 1981, **20**, 1081-1086.
- J. McMaster, R. L. Beddoes, D. Collison, D. R. Eardley, M. Helliwell and C. D. Garner *Chem. Eur. J.* 1996, **2**, 685-693.