Supporting data

Quantitative Formation and Clean Metal Exchange Processes of Large Void (> 5000 Å³) Nanobox Structures

Michael Schmittel,* Horst Ammon, Venkateshwarlu Kalsani, Andreas Wiegrefe, and Christoph Michel

Preparation of copper(I) complexes A-C

A mixture of copper (I) complexes A-C was obtained by reaction of the corresponding linear ligand 1 with macrocycle 3 and $[Cu(CH_3CN)_4](PF_6)$ in dry methylene chloride at room temperature. The formation of the copper complexes was immediately visible by their characteristic dark red colour. The ESI-MS shows formation of (at least!) three different copper(I) phenanthroline aggregates.

Figure 1. ESI-MS spectrum of the reaction mixture resulting from ligand 1 with macrocycle 3 and $[Cu(CH_3CN)_4](PF_6)$ in dry methylene chloride at room temperature. More details are contained in table 1.

	Schematic	Ions observed	Calcd.	Exp.	%
			m/z	m/z	[%]
[2+2]-box A		$\left[\mathbf{A}\right]^{\!+}$	5299.9	-	
		$[A - 2 PF_6]^{2+}$	2505.0	_	
		$[A - 3 PF_6]^{3+}$	1621.6	_	
		$[A + 4 H_2O - 4 PF_6]^{4+}$	1198.0	1197.8	24
		$[A - 4 PF_6]^{4+}$	1180.0	1180.2	38
		$[Cu(3)(H_2O)_2]^+$	1613.6	1613.7	18
triangle C+ H ₂ O		$[Cu_3(1)_3(PF_6)(H_2O)]^{2+}$	1255.2	1255.7	5
bis-heteroleptic complex		$[Cu_3(1)_2(3)(H_2O)_2]^{3+}$	1059.5	1058.9	8
		$[Cu_n(1)_n(H_2O)_{2n}]^{n+}$	818.5	818.3	15
		$[Cu_n(1)_n(H_2O)_n]^{n+}$	800.3	800.1	100
[n]-polymer B	/0/0/	$\left[\mathrm{Cu}_{\mathrm{n}}(1)_{\mathrm{n}}\right]^{\mathrm{n}+}$	782.5	782.9	90
Homoleptic complex	•	$\left[\operatorname{Cu}(1)_2\right]^+$	1499.5	1499.4	10
Ligand	1	$[1]^+$	718.9	717.8	18

Table 1: ESI-MS data for the reaction mixture containing A-C (mass range 300-2000 Dalton).

General procedure for the preparation of the copper(I) nanoboxes [4](PF₆)₄:

The copper (I) complexes $4a,b^{4+}$ were obtained by reaction of the corresponding linear ligands 2a,b with macrocycle 3 and [Cu(CH₃CN)₄](PF₆) in dry methylene chloride at room temperature. The formation of the copper complexes $4a,b^{4+}$ was immediately visible by their characteristic dark red colour. After a few minutes the solution was then evaporated to dryness affording a red solid, which was then further characterized.

General procedure for the preparation of the silver(I) nanoboxes [5](PF₆)₄:

The silver (I) complexes $5a,b^{4+}$ were obtained by treatment of the corresponding linear ligands 2a,b with macrocycle 3 and AgBF₄ in dry methylene chloride at room temperature. The formation of silver complexes $5a,b^{4+}$ was immediately recognized by their characteristic yellow colour. The solution was then evaporated to dryness furnishing a yellow solid, which was then further characterized.

Characterization of [4a](PF₆)₄:

Figure 2. ESI-MS of $4a^{4+}$ in acetone at room temperature (150 – 2000 Dalton).

Characterization of [4b](PF₆)₄

Figure 3. ESI-MS of nanobox $4b^{4+}$ in acetone at room temperature (100 – 2000 Dalton) including isotopic splitting (insert top: calcd.; insert bottom: exp.).

Characterization of [5a](PF₆)₄.

Figure 4. ESI-MS of $5a^{4+}$ in methylene chloride at room temperature (150 – 2000 Dalton).

Characterization of [5b](PF₆)₄

Figure 5. ESI-MS of nanobox $5b^{4+}$ in methylene chloride at room temperature (150 – 2000 Dalton).

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2002

Figure 6. Two perspective views of nanobox 4a (calculated by Hyperchem[®])

Figure 7. Dimensions of the box.

<u>Conversion of Silver(I) \rightarrow Copper(I) Nanobox: $5b^{4+} \rightarrow 4b^{4+}$.</u>

ESI-MS showing the signals corresponding to the intermediate nanobox structures formed through successive exchange of Ag^+ by Cu^+ starting from $[5b](PF_6)_4$ (in methylene chloride, room temperature, ESI-spectra:1370 – 1450 Dalton). The metal exchange was obtained by treatment of silver box $[5b](PF_6)_4$ (3.5 µmol) with CuI (14.7 µmol). After 180 min the formation of $[4b](PF_6)_4$ was almost complete. In the spectrum below the situation is depicted for t = 24 h.

c) ESI-MS after 24 h, which corresponds to pure $4b^{4+}$.

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2002

Figure 9. UV-Vis spectra of the silver(I) \rightarrow copper(I) nanobox conversion.