## Supplementary Information for B211289M

## A quasi-covalent metal-metal bond in an early-late heterobimetallic Ti-Pt complex stabilized by bridging and chelating phosphinoenolate ligands.

Pierre Braunstein,*a Xavier Morise, ${ }^{a}$ Marc Bénard, ${ }^{b}$ Marie-Madeleine Rohmer, ${ }^{b}$ and Richard Welter ${ }^{c}$<br>${ }^{\text {a }}$ Laboratoire de Chimie de Coordination, UMR CNRS 7513, Université Louis Pasteur, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France. E-mail : braunst@chimie.u-strasbg.fr<br>${ }^{b}$ Laboratoire de Chimie Quantique, UMR CNRS 7551, Université Louis Pasteur, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France.<br>c Laboratoire DECMET, UMR CNRS 7513, Université Louis Pasteur, 4 rue Blaise Pascal, F67070 Strasbourg Cedex, Frnace.

## Synthesis.

All reactions were carried out under an inert atmosphere of nitrogen, using Schlenk line techniques.

Complex 2. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the Cp protons give rise to a singlet at $\delta 6.36$ ppm and a doublet was observed for the enolate protons at $\delta 5.69 \mathrm{ppm}\left({ }^{2} J_{\mathrm{PH}}=5 \mathrm{~Hz}\right)$. Its IR spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ contains a strong absorption at $1534 \mathrm{~cm}^{-1}$, assigned to the $\left.\stackrel{v}{\mathrm{C}} \ldots \mathrm{O}\right)+$ ${ }^{\mathrm{v}_{\mathrm{C}}} \mathrm{m}_{\mathrm{C}}$ vibration.

Complex 3. Reaction of $2(0.280 \mathrm{~g}, 0.36 \mathrm{mmol})$ with $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{NBD})\right](0.110 \mathrm{~g}, 0.36$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ for 36 h , afforded complex 3 as an orange precipitate, which was filtered, washed with pentane ( 15 mL ) and dried in vacuo ( $0.170 \mathrm{~g}, 49 \%$ yield). IR (Nujol, $\left.\left.\mathrm{cm}^{-1}\right): 1545 \mathrm{~m} \mathrm{v}_{(\mathrm{C} \cdots \mathrm{C})}+v_{(\mathrm{C} \cdots \mathrm{O})}\right), 1858 \mathrm{~m}, 1898 \mathrm{~s}, 1925 \mathrm{~s}, 2022 \mathrm{~s}\left(\mathrm{v}_{\mathrm{CO}}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121.5 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ ): $\delta 13.2 ;{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ ): $\delta 5.62(\mathrm{~s}, 10 \mathrm{H}, \mathrm{Cp}), 5.49(\mathrm{~d}, 2 \mathrm{H}, \mathrm{OCH}$, ${ }^{2} J_{\mathrm{PH}} 0.7 \mathrm{~Hz}$ ). Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{42} \mathrm{MoO}_{6} \mathrm{P}_{2} \mathrm{Ti}: \mathrm{C}, 65.34$; H, 4.26. Found: C, $64.96 ; \mathrm{H}, 4.61$.

Complex 5. Freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added at room temperature to solid $2(1.250 \mathrm{~g}, 1.59 \mathrm{mmol})$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](1.190 \mathrm{~g}, 1.59 \mathrm{mmol})$. The reaction mixture was stirred for 3 h , after which the colour turned khaki. After removal of the volatiles under reduced pressure, the residue was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ (to eliminate side-products amongst which 4b was identified) and hexane ( $2 \times 20 \mathrm{~mL}$ ), to afford 5 as an air- and moisture-sensitive, apple green, solid ( $1.21 \mathrm{~g}, 77 \%$ yield). X-ray quality crystals of $\mathbf{5}$ were grown by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $-20{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right): \delta 7.85-6.72(\mathrm{~m}, 30 \mathrm{H}$, aromatics $), 6.41(\mathrm{~s}, 10 \mathrm{H}, \mathrm{Cp}), 5.31\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=15.7 \mathrm{~Hz}\right.$, CH in chelate $), 5.16\left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}=0.9 \mathrm{~Hz}, \mathrm{CH}\right.$ in bridge) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(121.5 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $298 \mathrm{~K}): \delta 56.1\left(\mathrm{~s},{ }^{1} J_{\mathrm{PtP}}=1053 \mathrm{~Hz}\right),-5.1\left(\mathrm{~s},{ }^{1} J_{\mathrm{PtP}}=4805 \mathrm{~Hz}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 980\left(\mathrm{M}^{+}+\mathrm{H}, 25\right)$, $915\left(\mathrm{M}^{+}+\mathrm{H}-\mathrm{Cp}, 6\right), 804$ (100), $676\left(\mathrm{M}^{+}-\mathrm{Cp}-\mathrm{Ph}_{2} \mathrm{PCHC}(\mathrm{Ph}) \mathrm{O}, 30\right)$. Anal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{PtTi}: \mathrm{C}, 61.29 ; \mathrm{H}, 4.32$. Found: C, 61.35; H, 4.28 .

## Crystal data of 5.

Nonius Kappa-CCD area detector diffractometer ( $\mathrm{MoK} \alpha, \lambda=0.71073 \AA$ ). Yellow crystal, dimensions: $0.15 \times 0.12 \times 0.10 \mathrm{~mm}^{3} ; \mathrm{C}_{50} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{PtTi} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2} ; M=1145.59 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$; triclinic, space groupe $P-1 ; a=11.963(2) \AA ; b=15.433(3) \AA ; c=16.420(4) \AA ; \alpha=65.10(1)^{\circ} ; \beta=$ $81.43(1)^{\circ} ; \gamma=86.04(1)^{\circ} ; Z=2 ; D \mathrm{c}=1.379{\mathrm{~g} \cdot \mathrm{~cm}^{-3} ; ~}^{\circ}(\mathrm{MoK} \alpha)=3.007 \mathrm{~mm}^{-1} ;$ a total of 12350 reflections (Denzo software); $3.05^{\circ}<\theta<27.39^{\circ}$, 12253 independent reflections with 7873 having $I>2 \sigma(I) ; 577$ parameters; final results: $\mathrm{R}(\mathrm{F})=0.0696 ; \mathrm{R}_{\mathrm{w}}(\mathrm{F})=0.01844$, GOF $=$ 1.030 , maximum residual electronic density $=1.499 \mathrm{e} \cdot \AA^{-3}$. The cell parameters were determined from reflections taken from one set of ten frames ( $1.0^{\circ}$ steps in phi angle), each at 20 s exposure. The structures were solved using direct methods (SIR97) and refined against $F^{2}$ using the SHELXL97 software. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were generated according to stereochemistry and refined using a riding model in SHELXL97. Disorder was observed at $\mathrm{C}(51)$ and $\mathrm{C}(53)$ atoms $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ molecules) where multiple positions of Cl atoms have been considered. The $\mathrm{C}-\mathrm{Cl}$ distances have been fixed at $1.77 \AA$. Crystallographic data (excluding structure factors) have been deposited in the Cambridge Crystallographic Data Centre as Supplementary publication $n^{\circ}$ CCDC 197745. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk). See
http://www.rsc.org/suppdata/cc/b2/b211289m for crystallographic data in CIF or other electronic format.

Structural comments. The Cp ligands make an angle of 19.3(2) and 22.1(2) ${ }^{\circ}$ with the $\mathrm{Pt}, \mathrm{Ti}, \mathrm{O}(1)$ plane. The $\mathrm{Pt}-\mathrm{Ti}$ and $\mathrm{Ti}-\mathrm{O}(1)$ bonds make an angle of $c a .58$ and $41^{\circ}$ with the plane passing through the Cp centroids and Ti. The dihedral angle between the mean planes containing $\mathrm{Ti}, \mathrm{Pt}, \mathrm{P}(1)$ and the $\mathrm{O}(2), \mathrm{Pt}, \mathrm{P}(2)$ atoms is $4.40^{\circ}$.

Table S1: Atomic parameters used for the extended Hückel calculations


[^0]
[^0]:    ${ }^{a}$ Two Slater orbitals are listed for valence d functions. Each is followed in parenthesis by the coefficients in the double zeta expansion.

