A quasi-covalent metal-metal bond in an early-late heterobimetallic Ti-Pt complex stabilized by bridging and chelating phosphinoenolate ligands.

Pierre Braunstein,*^a Xavier Morise,^a Marc Bénard,^b Marie-Madeleine Rohmer,^b and Richard Welter^c

 ^a Laboratoire de Chimie de Coordination, UMR CNRS 7513, Université Louis Pasteur, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France. E-mail : braunst@chimie.u-strasbg.fr
^b Laboratoire de Chimie Quantique, UMR CNRS 7551, Université Louis Pasteur, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France.
^c Laboratoire DECMET, UMR CNRS 7513, Université Louis Pasteur, 4 rue Blaise Pascal, F-

⁶⁷⁰⁷⁰ Strasbourg Cedex, Frnace.

Synthesis.

All reactions were carried out under an inert atmosphere of nitrogen, using Schlenk line techniques.

Complex 2. In the ¹H NMR spectrum, the Cp protons give rise to a singlet at § 6.36 ppm and a doublet was observed for the enolate protons at § 5.69 ppm (${}^{2}J_{PH} = 5$ Hz). Its IR spectrum (CH₂Cl₂) contains a strong absorption at 1534 cm⁻¹, assigned to the v_{C····O} + v_{C····O} vibration.

Complex **3**. Reaction of **2** (0.280 g, 0.36 mmol) with $[Mo(CO)_4(NBD)]$ (0.110 g, 0.36 mmol) in Et₂O (20 mL) for 36 h, afforded complex **3** as an orange precipitate, which was filtered, washed with pentane (15 mL) and dried in vacuo (0.170 g, 49% yield). IR (Nujol, cm⁻¹): 1545m v_(C...C) + v_(C...O)), 1858m, 1898s, 1925s, 2022s (v_{CO}); ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂): δ 13.2; ¹H NMR (300 MHz, CD₂Cl₂): δ 5.62 (s, 10H, Cp), 5.49 (d, 2H, OCH, ²J_{PH} 0.7 Hz). Anal. Calcd for C₅₄H₄₂MoO₆P₂Ti: C, 65.34; H, 4.26. Found: C, 64.96; H, 4.61.

Complex **5**. Freshly distilled CH₂Cl₂ (15 mL) was added at room temperature to solid **2** (1.250 g, 1.59 mmol) and [Pt(C₂H₄)(PPh₃)₂] (1.190 g, 1.59 mmol). The reaction mixture was stirred for 3 h, after which the colour turned khaki. After removal of the volatiles under reduced pressure, the residue was washed with Et₂O (2 x 15 mL) (to eliminate side-products amongst which **4b** was identified) and hexane (2 x 20 mL), to afford **5** as an air- and moisture-sensitive, apple green, solid (1.21 g, 77% yield). X-ray quality crystals of **5** were grown by slow diffusion of Et₂O into a CH₂Cl₂ solution at -20 °C. ¹H NMR (300 MHz, CD₂Cl₂, 298 K): δ 7.85-6.72 (m, 30H, aromatics), 6.41 (s, 10H, Cp), 5.31 (d, ²J_{PH} = 15.7 Hz, CH in chelate), 5.16 (d, ²J_{PH} = 0.9 Hz, CH in bridge). ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂, 298 K): δ 56.1 (s, ¹J_{PtP} = 1053 Hz), -5.1 (s, ¹J_{PtP} = 4805 Hz). MS (*m*/*z*): 980 (M⁺+H, 25), 915 (M⁺+H-Cp, 6), 804 (100), 676 (M⁺-Cp-Ph₂PCHC(Ph)O, 30). Anal. Calcd for C₅₀H₄₂O₂P₂PtTi: C, 61.29; H, 4.32. Found: C, 61.35; H, 4.28.

Crystal data of 5.

Nonius Kappa-CCD area detector diffractometer (MoK α , $\lambda = 0.71073$ Å). Yellow crystal, dimensions: $0.15 \times 0.12 \times 0.10 \text{ mm}^3$; $C_{50}H_{42}O_2P_2PtTi \cdot 2CH_2Cl_2$; $M = 1145.59 \text{ g-mol}^{-1}$; triclinic, space groupe *P*-1; a = 11.963(2) Å; b = 15.433(3) Å; c = 16.420(4) Å; $\alpha = 65.10(1)^{\circ}$; $\beta = 16.420(4)$ Å; $\alpha = 16.420(4)$ Å; $\alpha = 16.420(4)$ Å; $\alpha = 16.420(4)^{\circ}$; $\beta = 16.420(4)^{\circ}$ Å; $\alpha =$ $81.43(1)^{\circ}$; $\gamma = 86.04(1)^{\circ}$; Z = 2; Dc = 1.379 g·cm⁻³; μ (MoK α)= 3.007 mm⁻¹; a total of 12350 reflections (Denzo software); 3.05°<0<27.39°, 12253 independent reflections with 7873 having $I > 2\sigma(I)$; 577 parameters; final results: R(F) = 0.0696; $R_w(F) = 0.01844$, GOF = 1.030, maximum residual electronic density = 1.499 e·Å⁻³. The cell parameters were determined from reflections taken from one set of ten frames (1.0° steps in phi angle), each at 20 s exposure. The structures were solved using direct methods (SIR97) and refined against F^2 using the SHELXL97 software. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were generated according to stereochemistry and refined using a riding model in SHELXL97. Disorder was observed at C(51) and C(53) atoms (CH₂Cl₂ molecules) where multiple positions of Cl atoms have been considered. The C-Cl distances have been fixed at 1.77 Å. Crystallographic data (excluding structure factors) have been deposited in the Cambridge Crystallographic Data Centre as Supplementary publication n° CCDC 197745. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk). See

<u>http://www.rsc.org/suppdata/cc/b2/b211289m</u> for crystallographic data in CIF or other electronic format.

Structural comments. The Cp ligands make an angle of 19.3(2) and $22.1(2)^{\circ}$ with the Pt, Ti, O(1) plane. The Pt-Ti and Ti-O(1) bonds make an angle of *ca*. 58 and 41° with the plane passing through the Cp centroids and Ti. The dihedral angle between the mean planes containing Ti, Pt, P(1) and the O(2), Pt, P(2) atoms is 4.40° .

Atom	s shell H:: (eV) Exponent		p t H::(eV	p shell H:: (eV) Exponent		d shell H:: (eV) Expone			nts ^a	
		ζ		ζ		ζ_1	Expone	ζ_2		
H	-13.4	1.3								
С	-21.4	1.625	-11.4	1.625						
0	-32.3	2.275	-14.8	2.275						
Р	-18.6	1.6	-14.0	1.6						
Ti	-8.97	1.075	-5.44	0.675	-10.81	4.55	(0.4206)	1.4	(0.7839)	
Pt	-9.077	2.554	-5.475	2.554	-12.59	6.013	(0.6334)	2.696	(0.5513)	

Table S1: Atomic parameters used for the extended Hückel calculations

^{*a*} Two Slater orbitals are listed for valence d functions. Each is followed in parenthesis by the coefficients in the double zeta expansion.