A homochiral triple helix constructed from an axially chiral bipyridine

Yong Cui, Helen L. Ngo, and Wenbin Lin*
Department of Chemistry, CB\#3290, University of North Carolina, Chapel Hill, NC
27599, USA E-mail: wlin@unc.edu

Experimental.

Materials and Methods. All of the chemicals were purchased from Aldrich or Fisher Scientific, and used without further purification. The IR spectra were recorded as KBr pellets on a Nicolet Magna-560 FT-IR spectrometer. X-ray powder diffraction data (XRPD) were recorded on a Rigaku MultiFlex diffractometer at $40 \mathrm{kV}, 40 \mathrm{~mA}$ for $\mathrm{CuK} \alpha$ $(\lambda=1.5406 \AA)$, with a scan speed of $0.05-0.2 \mathrm{deg} / \mathrm{min}$. The calculated XRPD patterns were produced using the SHELXTL-XPOW program and single crystal reflection data. TGA experiments were carried out at a heating rate of $4^{\circ} \mathrm{C} / \mathrm{min}$ in air. The CD spectra were recorded as KBr pellets on a JASCO J-810 Circular Dichroism system.

Synthesis of 2,2'-dimethoxy-1,1'-binaphthyl-3,3'-bis(divinylpyridine). A mixture of 3,3'-diiodo-2,2'-dimethoxy-1,1'-binaphthalene ($2.0 \mathrm{~g}, 3.5 \mathrm{mmol}$), 4-vinylpyridine (1.14 $\mathrm{mL}, 10.6 \mathrm{mmol}$), palladium (II) acetate ($71 \mathrm{mg}, 0.177 \mathrm{mmol}$), and tris(o-tolyl)phosphine ($108 \mathrm{mg}, 0.355 \mathrm{mmol}$) was dissolved in 30 mL of anhydrous DMF and 20 mL of NEt_{3}. The mixture was heated to reflux for 48 hrs . Upon cooling to r.t., the organic volatiles were removed under reduced pressure, and the residue was dissolved in EtOAc and washed with water 3 times. The organic layer was dried with MgSO_{4}. The crude product was purified by silica gel column chromatography with EtOAc:actone (v/v 1:1) to give 900 mg of pure product (yield: 50%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.60\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=5.2 \mathrm{~Hz}, \mathrm{H}_{10}\right), 8.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 7.95(\mathrm{~d}$, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.5 \mathrm{~Hz}, \mathrm{H}_{5}\right), 7.82\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=17 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 7.43\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{9}\right.$ \& $\left.\mathrm{H}_{6}\right), 7.34\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=17 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.27\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.8 \& 7.2 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{7}\right), 7.16\left(\mathrm{~d}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=9.2 \mathrm{~Hz}, \mathrm{H}_{8}\right), 3.41\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right)$. NMR($\left.\mathrm{CDCl}_{3}\right): \delta 154.5$ (s), 150.2 (s), 144.9 (s), 134.1 (s), 130.7 (s), 129.9 (s), 128.6 (s), 128.4 (s), 127.9 (s), 127.2 (s$), 126.9$ (s), 125.7 (s),
 125.4 (s), 125.2 (s), 120.9 (s), $61.4\left(\mathrm{~s}, \mathrm{OCH}_{3}\right)$.

Figure S1. Powder XRD pattern of $\mathbf{1}$.

Figure S2. Simulated powder XRD pattern of $\mathbf{1}$.

Figure S3. TGA curve of $\mathbf{1}$.

Figure S4. A schematic showing the $\pi-\pi$ interactions in 1.

