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FigureESl 1: Crystal structure of L. H-atoms and toluene molecule removed for
clarity.
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FigureESI 2: Crystal packing diagramsof L.

The ligand forms an elaborate 3D H-bonded network involving at least three different modes

of interaction as described below. Additional ‘weaker’ interactions (C-H---p type) are
omitted here and will be described in a subsequent publication.

A H-bond interaction between a central aromatic ring
hydrogen to an adjacent pyridyl nitrogen links two arms:

H6c:--N3c 2.580 A, < C6c- H6c---N3c 155°; symmetry
codel-x,1-y,1-2).

H-bonding between an imino hydrogen and
pyridyl nitrogen links these units together
forming a2D shest:

H7b---N3b 2.678 A, < C7b- H7b---N3b 163°;
symmetry code1l-x,1-y,1-2)




A H-bond interaction between a centra
aromatic ring hydrogen to an adjacent
pyridyl nitrogen links the sheets into 3D:
H3a:--N3b 2.611 A, < C3a H3a--N3b
144°; symmetry code- X, - Y, 2 -2).

Disordered toluene molecules (not shown)
occupy channels.

Figures generated with Mercury 1.1.2, CCDC: www.ccdc.cam.ac.uk/mercury/



FigureESl 3: Electrospray M ass Spectrum of [AgsL 2] (PFs)s3
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(@ The ESMS of [AgL2](PFs)s from MeCN/CHCE solutions showing the parent ion,
[AgsL2]®* (iii), centred around nVz 479.762. Note the absence of peaks accounting for
any other M:L stoichiometry. Peaks (i) and (ii) are fragmentation products.

Peak () at 383.08 m/z is assigned to fragmentation product resulting on loss of a
pyridyl unit generating LG where L&= CzoHxNs, to give [Ag(MeCN),L¢**. (Calc.
m/z for [AgCasHzoNg]** = 383.02)

Peak (ii) at 427.56 m/zis assigned to the fragmentation product that results on loss of
L and Ag(l) to give [Ag(MeCN),L]?*. (Cac. m/z for [AgCaoHxNg]>* = 427.75)
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(b)  The theoretical mass and isotopic peak pattern (top) compared with the
experimentally found mass and isotopic pesk pattern pottom) for [AglLs]®" i.e
[AgCr2HsaN14]*



Figure ESl 4: Molecular models of (a) rac-[AgsL2]** and (b) meso-[AgsL 2]

(@ rac-[AgsL2]** showing the helical nature of the complex. Note how each ligand

‘arm’ crosses over the Ag-Ag axis. The L -enantiomer is shown.

(b) meso-[AgsL]>* showing both the helical nature of the complex as indicated by the
arrow, and the nonthelical nature as indicated by the crossed arrows. Note how only
one ligand ‘arm’ (from each ligand) crosses over the Ag-Ag axis. Irrespectively, the
‘meso’ - isomer must always retain a helical strand.

The models were generated using ISIS Draw version 2.1.1 (MDL Information
Systems) and the geometries optimised using Hyperchem version 7.0 (Hypercube
Inc.).



