Electronic Supplementary Information

Title Self-assembly and binding properties of a metallomacrocycle having two interactive binding subcavities

Author Sung-Youn Chang, Myoung-Chul Um, Hyounsoo Uh, Hye-Young Jang and Kyu-Sung Jeong*,

Contents

1. Syntheses of Ligand and Metallomacrocycle
2. Binding Studies
3. Concentration-Dependent ${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{1}$
4. Modeling Structure of $\mathbf{1}$
5. VPO Experiments of $\mathbf{1}$
6. ESI-Mass Spectra of Metallomacrocycle and Complexes

1. Syntheses of Ligand and Metallomacrocycle

General Experimental Methods: All reagents were, unless otherwise noted, used as purchased. Chloroform and dichloromethane were distilled under nitrogen from phosphorus pentoxide, acetonitrile from calcium hydride, tetrahydrofuran from $\mathrm{Na} /$ benzophenone, and pyridine, triethylamine and N, N-diisopopylethylamine from KOH . Melting points were uncorrected. All NMR spectra were recorded on a DRX-500 spectrometer and chemical shifts were reported in ppm downfield relative to TMS (0 ppm) for ${ }^{1} \mathrm{H}$ NMR, and the residual solvent peak $\left(\mathrm{CHCl}_{3}: 77 \mathrm{ppm}\right)$ for ${ }^{13} \mathrm{C}$ NMR spectrum. Infrared spectra were obtained with a Nicolet impact 410 FT-IR spectrometer and ESI-mass spectra were obtained with a VG Quattro mass spectrometer.
N-(4-iodo-2,6-diisopropylphenyl)- N^{\prime}-(3,5-dimethylpyridin-4-yl)pyridine-2,6-dicarboxamide (5): To а solution of pyridine-2,6-dicarbonyl dichloride $2(2.89 \mathrm{~g}, 14.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added dropwise a solution of 4-iodo-2,6-diisopropylaniline $\mathbf{3}^{1}(4.30 \mathrm{~g}, 14.2 \mathrm{mmol}, 1$ equiv) and N, N-diisopropylethylamine ($5.00 \mathrm{~mL}, 28.6 \mathrm{mmol}, 2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ for 1.5 h at $0{ }^{\circ} \mathrm{C}$ (ice-water bath) under argon, and he solution was stirred for 4 h at room temperature. 4-Amino-3,5-lutidine 4^{2} ($1.73 \mathrm{~g}, 14.2 \mathrm{mmol}, 1$ equiv) was added at $0{ }^{\circ} \mathrm{C}$ then the mixture was stirred at room temperature for 3 h . The organic solution was washed with saturated NaHCO_{3} solution and brine, and dried over anhydrous MgSO_{4}. After concentration, the residue was purified by column chromatography $\left(\mathrm{CHCl}_{3}:\right.$ Acetone $\left.=1: 1\right)$ to give 5 as a white solid ($5.15 \mathrm{~g}, 65 \%$: $\mathrm{mp} 270-$ $271{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.54(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{NH}), 9.05(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{NH}), 8.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 2 \mathrm{H}), 8.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 6 \mathrm{H}), 1.21$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 162.9,161.0,149.5,149.2,148.8,148.2,141.6$, $139.9,133.3,131.1,130.0,126.7,126.0,95.2,29.1,23.7,15.7$; IR (KBr) 3287, $1693 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{IN}_{4} \mathrm{O}_{2}$: C, 56.12; H, 5.25; N, 10.07. Found: C, $56.50 ; \mathrm{H}, 5.28 ; \mathrm{N}, 9.96$.

N-(4-(triisopropylsilyl-ethynyl)-2,6-diisopropylphenyl)- N '-(3,5-dimethylpyridin-4-yl)pyridine-2,6-

dicarboxamide (6): Compound $5(3.50 \mathrm{~g}, 6.28 \mathrm{mmol}), \mathrm{PPh}_{3}(164 \mathrm{mg}, 0.63 \mathrm{mmol}, 0.1$ equiv), $\mathrm{CuI}(24 \mathrm{mg}$,

[^0]$0.13 \mathrm{mmol}, \quad 0.02$ equiv), triisopropylsilylacetylene $(1.26 \mathrm{~mL}, 6.28 \mathrm{mmol}, 1$ equiv) and bis(dibenzylideneacetone) palladium(0) ($76 \mathrm{mg}, 0.13 \mathrm{mmol}, 0.02$ equiv) were added to a Schlenk tube. The solution was degassed by evacuating air then flushing N_{2} gas (3 times). THF (30 mL) and $\mathrm{Et}_{3} \mathrm{~N}(30 \mathrm{~mL}$) were added to the Schlenk tube and degassed again (3 times). The solution was stirred under nitrogen at $60-70{ }^{\circ} \mathrm{C}$ for 7 h . The reaction mixture was filtered through Celite and evaporated. The residue was dissolved in CHCl_{3} $(50 \mathrm{~mL})$, and washed with saturated NaHCO_{3} solution and brine. The organic layer was dried over anhydrous MgSO_{4}. After concentration, the residue was purified by column chromatography $\left(\mathrm{CHCl}_{3}\right.$:Acetone $\left.=1: 1\right)$ to give 6 as a white solid ($3.24 \mathrm{~g}, 85 \%$): mp 264-265 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.67(\mathrm{~s}, 1 \mathrm{H}$; NH), $9.06(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{NH}), 8.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 2 \mathrm{H}), 8.18(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{~s}, 2 \mathrm{H}), 3.17(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 1.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.15(\mathrm{~s}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 162.9,161.0,149.5,149.3,148.2,146.4,141.7,139.8,131.5,130.0,127.7,126.6,125.8$, 123.9, 107.5, $90.5,29.2,23.7,18.9,15.6,11.5$; IR (KBr) 3346, 2159, $1684 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{2}$ Si: C, 72.74; H, 8.25; N, 9.17. Found: C, 72.76; H, 8.41; N, 9.03.
N-(4-ethynyl-2,6-diisopropylphenyl)- N^{\prime}-(3,5-dimethylpyridin-4-yl)pyridine-2,6-dicarboxamide (7): To a solution of $6(3.24 \mathrm{~g}, 5.30 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ and water $(6.0 \mathrm{~mL}), 1.0 \mathrm{M}$ THF solution of tetrabutylammonium fluoride ($6.36 \mathrm{~mL}, 6.36 \mathrm{mmol}, 1.2$ equiv) was added. After being stirred at $70-72{ }^{\circ} \mathrm{C}$ for 12 h , the solution was concentrated and diluted with brine $(100 \mathrm{~mL})$. The residue was extracted with CHCl_{3} ($50 \mathrm{~mL} \times 3$). The organic layer was washed with brine, and dried over MgSO_{4}. After concentration, the residue was purified by column chromatography $\left(\mathrm{CHCl}_{3}\right.$:Acetone $\left.=1: 1\right)$ to give the product 7 as a white solid (3.24 g, 85\%): mp 268-269 ${ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}) 9.57(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{NH}), 9.06(\mathrm{~s}, 1 \mathrm{H}$; $\mathrm{NH}), 8.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 2 \mathrm{H}), 8.19(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 2 \mathrm{H})$, $3.17(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 1.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ $162.9,161.0,149.6,149.2,148.2,146.7,141.6,139.9,131.9,130.0,127.9,126.6,126.0,122.4,84.0,29.2$, 23.7, 15.7; IR (KBr) 3334, 3253, $1696 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 73.98 ; \mathrm{H}, 6.65 ; \mathrm{N}, 12.33$. Found: C, 73.64; H, 6.72; N, 12.17.

Ligand (8): A solution of $7(2.86 \mathrm{~g}, 6.29 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2}(2.51 \mathrm{~g}, 12.6 \mathrm{mmol}, 2.0$ equiv) in pyridine (60 mL) was stirred at $60-65^{\circ} \mathrm{C}$ for 20 h , then $\mathrm{Cu}(\mathrm{OAc})_{2}(2.51 \mathrm{~g}, 12.6 \mathrm{mmol}, 2.0$ equiv) was added. After being stirred 4 h , ice water (100 mL) was added, and the mixture was extracted with $\mathrm{CHCl}_{3}(30 \mathrm{~mL} \mathrm{x} 3)$. The organic layer was washed with 25% acetic acid $(100 \mathrm{~mL})$ and $25 \% \mathrm{NaHCO}_{3}$ solution $(120 \mathrm{~mL})$, then dried over anhydrous MgSO_{4}. After concentration, the residue was purified by column chromatography (MeOH: $\left.\mathrm{CHCl}_{3}: \mathrm{EtOAc}=1: 10: 10\right)$ to give ligand $\mathbf{8}$ as a white solid ($1.30 \mathrm{~g}, 85 \%$): $\mathrm{mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, 97: 3 \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}\right): \delta(\mathrm{ppm}) ; 9.66(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{NH}), 9.59(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{NH}), 8.52(\mathrm{~m}, 4 \mathrm{H}), 8.38(\mathrm{~s}, 4 \mathrm{H}), 8.19(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 4 \mathrm{H}), 3.17(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 12 \mathrm{H}), 1.22(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , 97:3 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}$): $\delta(\mathrm{ppm}) 162.7,161.2,149.3,148.5,148.1,147.1,141.7,139.4,132.5,130.1,127.8$, $125.8,125.6,121.6,81.8,73.7,28.8,23.3,15.2 ; \operatorname{IR}(\mathrm{KBr}) 3288,1696 \mathrm{~cm}^{-1} ; \operatorname{HRMS}-\operatorname{MALDI}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{56} \mathrm{H}_{58} \mathrm{~N}_{8} \mathrm{O}_{4}, 907.466$; found, 907.462.

Metallomacrocycle (1): A solution of ligand $\mathbf{8}(0.70 \mathrm{~g}, 0.77 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppp}) \mathrm{OTf}_{2}{ }^{3}(0.63 \mathrm{~g}, 0.77 \mathrm{mmol}$, 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at room temperature for 4 h under argon then filtered. Hexane was added and the solidified product $\mathbf{1}$ was washed with hexane repeatedly. A pale yellow solid ($1.30 \mathrm{~g}, 95 \%$): mp 263-264; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 97: 3 \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}$): $\delta(\mathrm{ppm}) 9.44(\mathrm{~s}, 4 \mathrm{H} ; \mathrm{NH}), 9.31(\mathrm{~s}, 4 \mathrm{H} ; \mathrm{NH}), 8.71(\mathrm{~s}$, $8 \mathrm{H}), 8.47(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.41(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.14(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.63(\mathrm{br} \mathrm{s}, 16 \mathrm{H}), 7.44-7.29$ (m, 32H), $3.14(\mathrm{br} \mathrm{s}, 8 \mathrm{H}), 2.98(\mathrm{~m}, 8 \mathrm{H}), 2.22(\mathrm{~m}, 4 \mathrm{H}), 2.02(\mathrm{~s}, 24 \mathrm{H}), 1.09(\mathrm{br} \mathrm{s}, 48 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , 97:3 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}$): $\delta(\mathrm{ppm}) 162.7,160.6,149.1,148.7,147.6,145.1,139.6,133.9,132.5,129.6,128.0$, $126.3,125.6,125.2,125.0,124.8,122.1,116.5,81.8,74.6,28.8,23.4,21.6,17.5,15.4$; $\mathrm{IR}(\mathrm{KBr}) 3265,1684$, 1158, 1099, $1025 \mathrm{~cm}^{-1}$; ESI-MS m/z (\% relative intensity, ion): $1574\left(100,[\mathrm{M}-2 \mathrm{OTf}]^{2+}\right), 1000(65,[\mathrm{M}-$ $\left.3 \mathrm{OTf}]^{3+}\right), 712\left(70,[\mathrm{M}-4 \mathrm{OTf}]^{4+}\right)$; Anal. Calcd for $\mathrm{C}_{170} \mathrm{H}_{168} \mathrm{~F}_{12} \mathrm{~N}_{16} \mathrm{O}_{20} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{~S}_{4} 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 58.00 ; \mathrm{H}, 5.04 ; \mathrm{N}$, 6.37; S, 3.64. Found: C, 57.78; H, 5.07; N, 6.27; S, 3.61.
(3) P. J. Stang, D. H. Cao, S. Saito and A. M. Arif, J. Am. Chem. Soc. 1995, 117, 6273-6283.

2. Binding Studies ${ }^{4}$

${ }^{1}$ H NMR Titrations: Chloroform was stored over $4 \AA$ molecular sieves, and filtered through basic alumina prior to use. A 5 mM solution of host (1) and a 50 mM solution of guest (9) in 97:3 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}(1.5-2.0$ mL) were separately prepared at $23 \pm 1{ }^{\circ} \mathrm{C}$. A $500 \mu \mathrm{~L}$ of the host solution was transferred to an NMR tube, and an initial NMR spectrum was taken to determine the initial chemical shift ($\delta_{\text {free }}$) of the free host. Aliquots of the guest solution ($10 \mu \mathrm{~L}$ initially, then $15-30 \mu \mathrm{~L}$, and finally $50-160 \mu \mathrm{~L}$) were added to the host solution. The spectrum was recorded after each addition and overall 20-21 data points were obtained. The association constants (K_{1} and K_{2}) were determined by fitting the titration curves plotting chemical shift of the host NH signals against the concentration of the guest, using HOSTEST program. ${ }^{5}$ EQNMR ${ }^{6}$ program gave similar results.

Hill Plots: Hill coefficient (h) was obtained from the slope of the plotting $\log [\mathrm{Y} /(1-\mathrm{Y})]$ versus $\log [\mathrm{G}]_{\text {free }}$. Data from titration experiments were used as it is.

$$
\begin{aligned}
& \mathrm{H}+2 \mathrm{G} \rightleftarrows \mathrm{HG}_{2} \quad K=\frac{\left[\mathrm{HG}_{2}\right]}{[\mathrm{H}][\mathrm{G}]^{2}} \\
& \log \frac{Y}{1-Y}=h \log [\mathrm{G}]_{\text {free }}+\log K, \quad Y=\frac{\left[\mathrm{HG}_{2}\right]}{2[\mathrm{H}]_{\mathrm{t}}}
\end{aligned}
$$

$[\mathrm{G}]_{\text {free: }}$ concentration of the free guest, $[\mathrm{H}]_{\mathrm{t}}$: total concentration of the host

Figure S1. Hill plots of $\mathbf{1}$ and $\mathbf{9}, \mathrm{NH}^{1}$ (left) and NH^{2} (right) were observed.

[^1]Job's plots: Stock solutions of host $\mathbf{1}(10.0 \mathrm{mM})$ and guest $\mathbf{9}(10.0 \mathrm{mM})$ in $97: 3 \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}(4 \mathrm{~mL})$ were prepared separately. Eleven NMR tubes were filled with total $500 \mu \mathrm{~L}$ solution of the host and guest in the following ratios ($\mu \mathrm{L}$, host:guest): 500:0, 450:50, 400:100, 350:150, 300:200, 250:250, 200:300, 150:350, 100:400, 50:450, 0:500. The ${ }^{1} \mathrm{H}$ NMR spectra were obtained for each tube, and the host NH signal and guest aromatic proton signal were used to calculate the complex concentration, $[\mathrm{HG}]=[\mathrm{H}]_{\mathrm{t}} \times\left[\left(\delta_{\text {obsd }}-\delta_{\text {free }}\right) /\left(\delta_{\max }\right.\right.$ $\left.\left.-\delta_{\text {free }}\right)\right]$. These values were plotted against the mol fraction of the host and the resulting curve showed a maximum at the mol fraction of ~ 0.33 of host indicative of host-guest $1: 2$ binding.

Figure S2. Job's plots between metallomacrocycle $\mathbf{1}$ and guest $\mathbf{9}$, based on NH^{1} of $\mathbf{1}$ (left) and NH^{2} of 1(right).

Figure S3. Job's plots between metallomacrocycle $\mathbf{1}$ and guest 9 , based aromatic proton of $\mathbf{9}$.
3. Concentration-Dependent ${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{1}\left(97: 3 \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}\right)$

4. Modeling Structure of $\mathbf{1}$

The energy-minimized structure was generated with $\mathrm{MM}^{* 7}$ force field and CHCl_{3} solvation parameters in MacroModel ${ }^{8}$ Version 7.1 using Silicon Graphics Indigo2. 1000 separate search steps were performed in Monte Carlo conformational search. Bond stretching and angle bending parameters for Pd were implemented in MM3 ${ }^{*}$ force field ${ }^{9}$ and Pd center was constrained according to the X-ray crystal structure. ${ }^{3}$

Figure S4. Energy-minimized structure of $\mathbf{1}$ generated by MM3 ${ }^{*}$ force field.

[^2]
5. VPO^{10} Experiments of $\mathbf{1}$

The experiments were performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25{ }^{\circ} \mathrm{C}$ over a concentration range $3.6-13.0 \mathrm{~g} / \mathrm{kg}$ (sample/solvent) using a Knauer K-7000 twin-thermistor hanging-drop vapor pressure osmometer. Total 6 different stock solutions were prepared and 2-3 measurements were made at each concentration. A calibration curve was generated using benzil as the standard $(M W=210.23)$ under the same condition.

Table S1. VPO data for benzil in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.

Entry	Concn of benzil $(\mathrm{mmol} / \mathrm{kg})$	VPO reading
1	2.0	2.0
2	2.5	2.3
3	3.0	2.9
4	3.5	3.4
5	4.0	3.8

Figure S5. Plots of VPO reading vs concentration (left) and VPO reading/concentration vs concentration (right) for the standard, benzil.

[^3]Table S2. VPO data for $\mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$.

Entry	Concn of $\mathbf{1}$ $(\mathrm{g} / \mathrm{kg})$	VPO reading	Calcd concn of $\mathbf{1}^{*}$ $(\mathrm{mmol} / \mathrm{kg})$	Calcd MW
1	3.6	1.1	1.0	3400
2	5.0	1.4	1.4	3500
3	7.1	1.9	2.0	3600
4	9.1	2.4	2.5	3700
5	11.0	2.9	3.0	3600
6	13.0	3.2	3.3	3900

* Molal concentrations of $\mathbf{1}$ were calculated from the calibration curve equation: $\mathrm{y}=0.94 \mathrm{x}+0.073$, Molal concn $=(\mathrm{VPO}$ reading -0.073$) / 0.94$

Figure S6. Plots of VPO reading vs concentration (left) and VPO reading/concentration vs concentration (right) for 1.

Figure S7. Plots of calculated molecular weight vs concentration of $\mathbf{1}$.

6. ESI-Mass Spectra of Metallomacrocycle and Complexes

Table S3. ESI-mass spectral data of $\mathbf{1}$ in $50 \%(\mathrm{v} / \mathrm{v}) \mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{CHCl}_{3}$.

m / z	Ion	Intensity
1574	$[\mathrm{M}-2 \mathrm{OTf}]^{2+}$	100%
1000	$[\mathrm{M}-3 \mathrm{OTf}]^{3+}$	65%
712^{*}	$[\mathrm{M}-4 \mathrm{OTf}]^{4+}$	70%

*The peaks for $[(\mathrm{M}-4 \mathrm{OTf}) / 2]^{2+}$ have been overlapped with $[\mathrm{M}-4 \mathrm{OTf}]^{4+}$ at $\mathrm{m} / \mathrm{z}=712$.

Figure S8. Observed ESI-mass spectrum of $\mathbf{1}$.

Figure S9. Observed (left) and calculated (right) isotopic distributions for $[\mathrm{m} / \mathrm{m}-3 \mathrm{OTf}]^{3+}$.

Figure S10. Observed (left) and calculated (right) isotopic distributions for two overlapped species, $[\mathrm{M}-4 \mathrm{OTf}]^{4+}$ and $[(\mathrm{M}-4 \mathrm{OTf}) / 2]^{2+}$.

Table S4. ESI-mass spectral data of $\mathbf{1}$ in the presence of guest 9 (~ 10 equiv) in 3 and $50 \%(\mathrm{v} / \mathrm{v})$ $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}{ }^{*}$.

$\% \quad \mathrm{CH}_{3} \mathrm{CN}$ in CHCl_{3}	$\mathbf{M G}_{\mathbf{2}}(1: 2$ complex $)$			$\mathbf{M G}_{\mathbf{1}}(1: 1$ complex)			M (1)		
	m / z	Ion	Intensity	m / z	Ion	Intensity	m / z	Ion	Intensity
3\%	1794	$\left[\mathrm{MG}_{2}-2 \mathrm{OTf}\right]^{2+}$	7\%	1684	$\left[\mathrm{MG}_{1}-2 \mathrm{OTf}\right]^{2+}$	7\%	1574	$[\mathrm{M}-2 \mathrm{OTf}]^{2+}$	3\%
	1146	$\left[\mathrm{MG}_{2}-3 \mathrm{OTf}\right]^{3+}$	25\%	1073	$\left[\mathrm{MG}_{1}-3 \mathrm{OTf}\right]^{3+}$	38\%	1000	$[\mathrm{M}-3 \mathrm{OTf}]^{3+}$	13\%
	823	$\left[\mathrm{MG}_{2}-4 \mathrm{OTf}\right]^{4+}$	32\%	768	$\left[\mathrm{MG}_{1}-4 \mathrm{OTf}\right]^{4+}$	4\%	712	$[\mathrm{M}-4 \mathrm{OTf}]^{4+}$	80\%
50\%	1794	$\left[\mathrm{MG}_{2}-2 \mathrm{OTf}\right]^{2+}$	10\%	1684	$\left[\mathrm{MG}_{1}-2 \mathrm{OTf}\right]^{2+}$	2\%	1574	$[\mathrm{M}-2 \mathrm{OTf}]^{2+}$	0\%
	1146	$\left[\mathrm{MG}_{2}-3 \mathrm{OTf}\right]^{3+}$	56\%	1073	$\left[\mathrm{MG}_{1}-3 \mathrm{OTf}\right]^{3+}$	53\%	1000	$[\mathrm{M}-3 \mathrm{OTf}]^{3+}$	14\%
	823	$\left[\mathrm{MG}_{2}-4 \mathrm{OTf}\right]^{4+}$	13\%	768	$\left[\mathrm{MG}_{1}-4 \mathrm{OTf}\right]^{4+}$	4\%	712	$[\mathrm{M}-4 \mathrm{OTf}]^{4+}$	1\%

Figure S11. ESI-mass spectrum of $\mathbf{1}$ and $\mathbf{9}$ in $3 \%(\mathrm{v} / \mathrm{v}) \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}$.

Figure S12. ESI-mass spectrum of $\mathbf{1}$ and $\mathbf{9}$ in $50 \%(\mathrm{v} / \mathrm{v}) \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}$.

Figure S13. Observed (left) and calculated (right) isotopic distributions for $\left[\mathrm{MG}_{2}-3 \mathrm{OTf}\right]^{3+}$ in $50 \%(\mathrm{v} / \mathrm{v})$ $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}$.

Figure S14. Observed (left) and calculated (right) isotopic distributions for $\left[\mathrm{MG}_{1}-3 \mathrm{OTf}\right]^{3+}$ in $50 \%(\mathrm{v} / \mathrm{v})$ $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}$.

[^0]: (1) S. Kajigaeshi, T. Kakinami, H. Yamasaki, S. Fujisaki and T. Okamoto, Bull. Chem. Soc. Jpn. 1988, 61, 600-602.
 (2) (a) M. Malinowski and Ł. Kaczmarek, J. Prakt. Chem. 1988, 154-158. (b) J. M. Essery and K. Schofield, J. Chem. Soc. 1960, 4953-4959.

[^1]: (4) (a) K. A. Connors, Binding Constants; John Wiley \& Sons: New York, 1987. (b) H.-H. Schneider and A. K. Yatsimirsky, Principles and Methods in Supramolecular Chemistry; John Wiley \& Sons; New York, 2000.
 (5) C. S. Wilcox, and N. M. Glagovich, HOSTEST, v5.60; Department of Chemistry, The University of Pittsburgh: Pittsburgh, PA, 1997

[^2]: (7) N. L. Allinger, Y. H. Yuh and J. H. Lii, J. Am. Chem. Soc. 1989, 111, 8551-8556.
 (8) F. Mohamedi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G.. Chang, T. Hendrickson and W. C. Still, J. Comp. Chem. 1990, 11, 440-467.
 (9) H. Hagelin, B. Åkermark and P.-O. Norrby, Organometallics 1999, 18, 2884-2895.

[^3]: 10 (a) E. E. Schrier, J. Chem. Edu. 1968, 45, 176-180. (b) C. T. Seto and G. M. Whitesides, J. Am. Chem. Soc. 1993, 115, 13301340. (c) A. S. Shetty, J. Zhang and J. S. Moore, J. Am. Chem. Soc. 1996, 118, 1019-1027.

