Electronic Supplementary Information

- Title Self-assembly and binding properties of a metallomacrocycle having two interactive binding subcavities
- Author Sung-Youn Chang, Myoung-Chul Um, Hyounsoo Uh, Hye-Young Jang and Kyu-Sung Jeong*,

Contents

- 1. Syntheses of Ligand and Metallomacrocycle
- 2. Binding Studies
- 3. Concentration-Dependent ¹H NMR Spectra of **1**
- 4. Modeling Structure of 1
- 5. VPO Experiments of **1**
- 6. ESI-Mass Spectra of Metallomacrocycle and Complexes

1. Syntheses of Ligand and Metallomacrocycle

General Experimental Methods: All reagents were, unless otherwise noted, used as purchased. Chloroform and dichloromethane were distilled under nitrogen from phosphorus pentoxide, acetonitrile from calcium hydride, tetrahydrofuran from Na/benzophenone, and pyridine, triethylamine and *N*,*N*-diisopopylethylamine from KOH. Melting points were uncorrected. All NMR spectra were recorded on a DRX-500 spectrometer and chemical shifts were reported in ppm downfield relative to TMS (0 ppm) for ¹H NMR, and the residual solvent peak (CHCl₃: 77 ppm) for ¹³C NMR spectrum. Infrared spectra were obtained with a Nicolet impact 410 FT-IR spectrometer and ESI-mass spectra were obtained with a VG Quattro mass spectrometer.

N-(4-iodo-2,6-diisopropylphenyl)-*N*²-(3,5-dimethylpyridin-4-yl)pyridine-2,6-dicarboxamide (5): To a solution of pyridine-2,6-dicarbonyl dichloride **2** (2.89 g, 14.2 mmol) in CH₂Cl₂ (30 mL) was added dropwise a solution of 4-iodo-2,6-diisopropylaniline **3**¹ (4.30 g, 14.2 mmol, 1 equiv) and *N*,*N*-diisopropylethylamine (5.00 mL, 28.6 mmol, 2 equiv) in CH₂Cl₂ (30 mL) for 1.5 h at 0 °C (ice-water bath) under argon, and he solution was stirred for 4 h at room temperature. 4-Amino-3,5-lutidine **4**² (1.73 g, 14.2 mmol, 1 equiv) was added at 0 °C then the mixture was stirred at room temperature for 3 h. The organic solution was washed with saturated NaHCO₃ solution and brine, and dried over anhydrous MgSO₄. After concentration, the residue was purified by column chromatography (CHCl₃:Acetone=1:1) to give **5** as a white solid (5.15 g, 65%): mp 270–271 °C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 9.54 (s, 1H; NH), 9.05 (s, 1H; NH), 8.57 (d, *J* = 7.8 Hz, 1H), 8.51 (d, *J* = 7.8 Hz, 1H), 8.27 (s, 2H), 8.19 (t, *J* = 7.8 Hz, 1H), 7.53 (s, 2H), 3.12 (m, 2H), 2.21 (s, 6H), 1.21 (d, *J* = 6.8 Hz, 12H); ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 162.9, 161.0, 149.5, 149.2, 148.8, 148.2, 141.6, 139.9, 133.3, 131.1, 130.0, 126.7, 126.0, 95.2, 29.1, 23.7, 15.7; IR (KBr) 3287, 1693 cm⁻¹; Anal. Calcd for C₂₆H₂₉IN4O₂: C, 56.12; H, 5.25; N, 10.07. Found: C, 56.50; H, 5.28; N, 9.96.

N-(4-(triisopropylsilyl-ethynyl)-2,6-diisopropylphenyl)-N'-(3,5-dimethylpyridin-4-yl)pyridine-2,6-

dicarboxamide (6): Compound 5 (3.50 g, 6.28 mmol), PPh₃ (164 mg, 0.63 mmol, 0.1 equiv), CuI (24 mg,

⁽¹⁾ S. Kajigaeshi, T. Kakinami, H. Yamasaki, S. Fujisaki and T. Okamoto, Bull. Chem. Soc. Jpn. 1988, 61, 600-602.

^{(2) (}a) M. Malinowski and Ł. Kaczmarek, J. Prakt. Chem. 1988, 154-158. (b) J. M. Essery and K. Schofield, J. Chem. Soc. 1960, 4953-4959.

0.02 equiv), triisopropylsilylacetylene (1.26 mL, 0.13 mmol, 6.28 mmol, 1 equiv) and bis(dibenzylideneacetone) palladium(0) (76 mg, 0.13 mmol, 0.02 equiv) were added to a Schlenk tube. The solution was degassed by evacuating air then flushing N₂ gas (3 times). THF (30 mL) and Et₃N (30 mL) were added to the Schlenk tube and degassed again (3 times). The solution was stirred under nitrogen at 60–70 °C for 7 h. The reaction mixture was filtered through Celite and evaporated. The residue was dissolved in CHCl₃ (50 mL), and washed with saturated NaHCO₃ solution and brine. The organic layer was dried over anhydrous MgSO₄. After concentration, the residue was purified by column chromatography (CHCl₃:Acetone=1:1) to give **6** as a white solid (3.24 g, 85%): mp 264–265 °C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 9.67 (s, 1H; NH), 9.06 (s, 1H; NH), 8.57 (d, J = 7.7 Hz, 1H), 8.50 (d, J = 7.7 Hz, 1H), 8.26 (s, 2H), 8.18 (t, J = 7.7 Hz, 1H), 7.31(s, 2H), 3.17 (m, 2H), 2.19 (s, 6H), 1.23 (d, J = 6.8 Hz, 12H), 1.15 (s, 21 H); ¹³C NMR (126 MHz, CDCl₃): δ (ppm) 162.9, 161.0, 149.5, 149.3, 148.2, 146.4, 141.7, 139.8, 131.5, 130.0, 127.7, 126.6, 125.8, 123.9, 107.5, 90.5, 29.2, 23.7, 18.9, 15.6, 11.5; IR (KBr) 3346, 2159, 1684 cm⁻¹; Anal. Calcd for C₃₇H₅₀N₄O₂Si: C, 72.74; H, 8.25; N, 9.17. Found: C, 72.76; H, 8.41; N, 9.03.

N-(4-ethynyl-2,6-diisopropylphenyl)-*N*'-(3,5-dimethylpyridin-4-yl)pyridine-2,6-dicarboxamide (7): To a solution of **6** (3.24 g, 5.30 mmol) in THF (100 mL) and water (6.0 mL), 1.0 M THF solution of tetrabutylammonium fluoride (6.36 mL, 6.36 mmol, 1.2 equiv) was added. After being stirred at 70–72 °C for 12 h, the solution was concentrated and diluted with brine (100 mL). The residue was extracted with CHCl₃ (50 mL x 3). The organic layer was washed with brine, and dried over MgSO₄. After concentration, the residue was purified by column chromatography (CHCl₃:Acetone=1:1) to give the product **7** as a white solid (3.24 g, 85%): mp 268–269 °C (dec); ¹H NMR (500 MHz, CDCl₃): δ (ppm) 9.57 (s, 1H; NH), 9.06(s, 1H; NH), 8.57(d, *J* = 7.7 Hz, 1H), 8.51(d, *J* = 7.7 Hz, 1H), 8.28 (s, 2H), 8.19 (t, *J* = 7.7 Hz, 1H), 7.37 (s, 2H), 3.17 (m, 2H), 3.09 (s, 1H), 2.20 (s, 6H), 1.23 (d, *J* = 6.8 Hz, 12H); ¹³C NMR(126 MHz, CDCl₃): δ (ppm) 162.9, 161.0, 149.6, 149.2, 148.2, 146.7, 141.6, 139.9, 131.9, 130.0, 127.9, 126.6, 126.0, 122.4, 84.0, 29.2, 23.7, 15.7; IR (KBr) 3334, 3253, 1696 cm⁻¹; Anal. Calcd for C₂₈H₃₀N₄O₂: C, 73.98; H, 6.65; N, 12.33. Found: C, 73.64; H, 6.72; N, 12.17.

Ligand (8): A solution of **7** (2.86 g, 6.29 mmol) and Cu(OAc)₂ (2.51 g, 12.6 mmol, 2.0 equiv) in pyridine (60 mL) was stirred at 60–65 °C for 20 h, then Cu(OAc)₂ (2.51 g, 12.6 mmol, 2.0 equiv) was added. After being stirred 4 h, ice water (100 mL) was added, and the mixture was extracted with CHCl₃ (30 mL x 3). The organic layer was washed with 25% acetic acid (100 mL) and 25% NaHCO₃ solution (120 mL), then dried over anhydrous MgSO₄. After concentration, the residue was purified by column chromatography (MeOH:CHCl₃:EtOAc=1:10:10) to give ligand **8** as a white solid (1.30 g, 85%): mp >300 °C; ¹H NMR (500 MHz, 97:3 CDCl₃/CD₃CN): δ (ppm); 9.66 (s, 2H; NH), 9.59 (s, 2H; NH), 8.52 (m, 4H), 8.38 (s, 4H), 8.19 (t, *J* = 7.7 Hz, 2H), 7.42 (s, 4H), 3.17 (m, 4H), 2.30 (s, 12H), 1.22 (d, *J* = 6.6 Hz, 24H); ¹³C NMR (126 MHz, 97:3 CDCl₃/CD₃CN): δ (ppm) 162.7, 161.2, 149.3, 148.5, 148.1, 147.1, 141.7, 139.4, 132.5, 130.1, 127.8, 125.8, 125.6, 121.6, 81.8, 73.7, 28.8, 23.3, 15.2; IR (KBr) 3288, 1696 cm⁻¹; HRMS-MALDI (*m*/*z*): [M + H]⁺ calcd for C₅₆H₅₈N₈O₄, 907.466; found, 907.462.

Metallomacrocycle (1): A solution of ligand **8** (0.70 g, 0.77 mmol) and Pd(dppp)OTf₂³ (0.63 g, 0.77 mmol, 1 equiv) in CH₂Cl₂ (10 mL) was stirred at room temperature for 4 h under argon then filtered. Hexane was added and the solidified product **1** was washed with hexane repeatedly. A pale yellow solid (1.30 g, 95 %): mp 263–264; ¹H NMR (500 MHz, 97:3 CDCl₃/CD₃CN): δ (ppm) 9.44 (s, 4H; NH), 9.31 (s, 4H; NH), 8.71 (s, 8H), 8.47 (d, *J* = 7.7 Hz, 4H), 8.41 (d, *J* = 7.7 Hz, 4H), 8.14 (t, *J* = 7.7 Hz, 4H), 7.63 (br s, 16H), 7.44-7.29 (m, 32H), 3.14 (br s, 8H), 2.98 (m, 8H), 2.22 (m, 4H), 2.02 (s, 24H), 1.09 (br s, 48H); ¹³C NMR (126 MHz, 97:3 CDCl₃/CD₃CN): δ (ppm) 162.7, 160.6, 149.1, 148.7, 147.6, 145.1, 139.6, 133.9, 132.5, 129.6, 128.0, 126.3, 125.6, 125.2, 125.0, 124.8, 122.1, 116.5, 81.8, 74.6, 28.8, 23.4, 21.6, 17.5, 15.4; IR (KBr) 3265, 1684, 1158, 1099, 1025 cm⁻¹; ESI-MS *m*/*z* (% relative intensity, ion): 1574 (100, [M – 20Tf]²⁺), 1000 (65, [M – 30Tf]³⁺), 712 (70, [M – 40Tf]⁴⁺); Anal. Calcd for C₁₇₀H₁₆₈F₁₂N₁₆O₂₀P₄Pd₂S₄·4H₂O: C, 58.00; H, 5.04; N, 6.37; S, 3.64. Found: C, 57.78; H, 5.07; N, 6.27; S, 3.61.

⁽³⁾ P. J. Stang, D. H. Cao, S. Saito and A. M. Arif, J. Am. Chem. Soc. 1995, 117, 6273-6283.

2. Binding Studies⁴

¹**H NMR Titrations**: Chloroform was stored over 4 Å molecular sieves, and filtered through basic alumina prior to use. A 5 mM solution of host (1) and a 50 mM solution of guest (9) in 97:3 CDCl₃/CD₃CN (1.5–2.0 mL) were separately prepared at 23±1 °C. A 500 µL of the host solution was transferred to an NMR tube, and an initial NMR spectrum was taken to determine the initial chemical shift (δ_{free}) of the free host. Aliquots of the guest solution (10 µL initially, then 15–30 µL, and finally 50–160 µL) were added to the host solution. The spectrum was recorded after each addition and overall 20–21 data points were obtained. The association constants (K_1 and K_2) were determined by fitting the titration curves plotting chemical shift of the host NH signals against the concentration of the guest, using HOSTEST program.⁵ EQNMR⁶ program gave similar results.

Hill Plots: Hill coefficient(*h*) was obtained from the slope of the plotting $\log[Y/(1-Y)]$ versus $\log[G]_{\text{free}}$. Data from titration experiments were used as it is.

H+2G
$$\longrightarrow$$
 HG₂ $K = \frac{[HG_2]}{[H][G]^2}$
 $\log \frac{Y}{1-Y} = h \log[G]_{\text{free}} + \log K, \ Y = \frac{[HG_2]}{2[H]_{\text{free}}}$

[G]_{free}: concentration of the free guest, [H]_t: total concentration of the host

Figure S1. Hill plots of 1 and 9, NH¹ (left) and NH² (right) were observed.

^{(4) (}a) K. A. Connors, *Binding Constants*; John Wiley & Sons: New York, 1987. (b) H.-H. Schneider and A. K. Yatsimirsky, *Principles and Methods in Supramolecular Chemistry*; John Wiley & Sons; New York, 2000.

⁽⁵⁾ C. S. Wilcox, and N. M. Glagovich, HOSTEST, v5.60; Department of Chemistry, The University of Pittsburgh: Pittsburgh, PA, 1997

Job's plots: Stock solutions of host **1**(10.0 mM) and guest **9** (10.0 mM) in 97:3 CDCl₃/CD₃CN (4 mL) were prepared separately. Eleven NMR tubes were filled with total 500 µL solution of the host and guest in the following ratios (µL, host:guest): 500:0, 450:50, 400:100, 350:150, 300:200, 250:250, 200:300, 150:350, 100:400, 50:450, 0:500. The ¹H NMR spectra were obtained for each tube, and the host NH signal and guest aromatic proton signal were used to calculate the complex concentration, $[HG] = [H]_t \times [(\delta_{obsd} - \delta_{free}) / (\delta_{max} - \delta_{free})]$. These values were plotted against the mol fraction of the host and the resulting curve showed a maximum at the mol fraction of ~ 0.33 of host indicative of host-guest 1:2 binding.

Figure S2. Job's plots between metallomacrocycle 1 and guest 9, based on NH^1 of 1 (left) and NH^2 of 1(right).

Figure S3. Job's plots between metallomacrocycle 1 and guest 9, based aromatic proton of 9.

⁽⁶⁾ M. Hynes, J. J. Chem. Soc. Dalton Trans. 1993, 311-312.

3. Concentration-Dependent ¹H NMR Spectra of **1** (97:3 CDCl₃/CD₃CN, 25 °C)

4. Modeling Structure of 1

The energy-minimized structure was generated with MM3^{*7} force field and CHCl₃ solvation parameters in MacroModel⁸ Version 7.1 using Silicon Graphics Indigo2. 1000 separate search steps were performed in Monte Carlo conformational search. Bond stretching and angle bending parameters for Pd were implemented in MM3^{*} force field⁹ and Pd center was constrained according to the X-ray crystal structure.³

Figure S4. Energy-minimized structure of **1** generated by MM3^{*} force field.

⁽⁷⁾ N. L. Allinger, Y. H. Yuh and J. H. Lii, J. Am. Chem. Soc. 1989, 111, 8551-8556.

⁽⁸⁾ F. Mohamedi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson and W. C. Still, J. Comp. Chem. 1990, 11, 440-467.

⁽⁹⁾ H. Hagelin, B. Åkermark and P.-O. Norrby, Organometallics 1999, 18, 2884-2895.

5. VPO¹⁰ Experiments of **1**

The experiments were performed in CH_2Cl_2 at 25 °C over a concentration range 3.6–13.0 g/kg (sample/solvent) using a Knauer K-7000 twin-thermistor hanging-drop vapor pressure osmometer. Total 6 different stock solutions were prepared and 2–3 measurements were made at each concentration. A calibration curve was generated using benzil as the standard (MW = 210.23) under the same condition.

Table S1. VPO data for benzil in CH₂Cl₂ at 25 °C.

Entry	Concn of benzil (mmol/kg)	VPO reading		
1	2.0	2.0		
2	2.5	2.3		
3	3.0	2.9		
4	3.5	3.4		
5	4.0	3.8		

Figure S5. Plots of VPO reading vs concentration (left) and VPO reading/concentration vs concentration (right) for the standard, benzil.

^{10 (}a) E. E. Schrier, *J. Chem. Edu.* **1968**, 45, 176-180. (b) C. T. Seto and G. M. Whitesides, *J. Am. Chem. Soc.* **1993**, *115*, 1330-1340. (c) A. S. Shetty, J. Zhang and J. S. Moore, *J. Am. Chem. Soc.* **1996**, *118*, 1019-1027.

Entry	Concn of 1 (g/kg)	VPO reading	Calcd concn of 1 [*] (mmol/kg)	Calcd MW
1	3.6	1.1	1.0	3400
2	5.0	1.4	1.4	3500
3	7.1	1.9	2.0	3600
4	9.1	2.4	2.5	3700
5	11.0	2.9	3.0	3600
6	13.0	3.2	3.3	3900

Table S2. VPO data for **1** in CH₂Cl₂ at 25 °C.

* Molal concentrations of **1** were calculated from the calibration curve equation: y = 0.94 x + 0.073,

Molal concn = (VPO reading - 0.073)/0.94

Figure S6. Plots of VPO reading vs concentration (left) and VPO reading/concentration vs concentration

(right) for 1.

Figure S7. Plots of calculated molecular weight vs concentration of **1**.

6. ESI-Mass Spectra of Metallomacrocycle and Complexes

m/z.	Ion	Intensity
1574	$[M-2OTf]^{2+}$	100%
1000	$[M-3OTf]^{3+}$	65%
712*	$[M-4OTf]^{4+}$	70%

Table S3. ESI-mass spectral data of **1** in 50% (v/v) CH₃CN/CHCl₃.

*The peaks for $[(M-4OTf)/2]^{2+}$ have been overlapped with $[M-4OTf]^{4+}$ at m/z = 712.

Figure S8. Observed ESI-mass spectrum of 1.

Figure S10. Observed (left) and calculated (right) isotopic distributions for two overlapped species, $[M-4OTf]^{4+}$ and $[(M-4OTf)/2]^{2+}$.

Table S4. ESI-mass spectral data of 1 in the presence of guest 9 (~10 equiv) in 3 and 50% (v/v) $CH_3CN/CHCl_3^*$.

% CH ₃ CN	MG_2 (1:2 complex)		MG_1 (1:1 complex)		M (1)				
in CHCl ₃	m/z	Ion	Intensity	m/z	Ion	Intensity	m/z.	Ion	Intensity
	1794	$[MG_2 - 2OTf]^{2+}$	7%	1684	$[MG_1 - 2OTf]^{2+}$	7%	1574	$[M-2OTf]^{2+}$	3%
3%	1146	$[MG_2 - 3OTf]^{3+}$	25%	1073	$\left[MG_1 - 3OTf\right]^{3+}$	38%	1000	$[M-3OTf]^{3+}$	13%
	823	$[MG_2 - 4OTf]^{4+}$	32%	768	$[MG_1 - 4OTf]^{4+}$	4%	712	[M-4OTf] ⁴⁺	80%
	1794	$[MG_2 - 2OTf]^{2+}$	10%	1684	$[MG_1 - 2OTf]^{2+}$	2%	1574	$[M-2OTf]^{2+}$	0%
50%	1146	$[MG_2 - 3OTf]^{3+}$	56%	1073	$\left[MG_{1}30Tf\right]^{3+}$	53%	1000	[M-3OTf] ³⁺	14%
	823	$[MG_2 - 4OTf]^{4+}$	13%	768	$[MG_1 - 4OTf]^{4+}$	4%	712	$[M-4OTf]^{4+}$	1%

Figure S11. ESI-mass spectrum of 1 and 9 in 3% (v/v) CH₃CN/CHCl₃.

Figure S12. ESI-mass spectrum of 1 and 9 in 50% (v/v) CH₃CN/CHCl₃.

Figure S13. Observed (left) and calculated (right) isotopic distributions for $[MG_2-3OTf]^{3+}$ in 50% (v/v) CH₃CN/CHCl₃.

Figure S14. Observed (left) and calculated (right) isotopic distributions for $[MG_1-3OTf]^{3+}$ in 50% (v/v) CH₃CN/CHCl₃.