Electronic Supplementary Information

A stable cis-stilbene derivative encapsulated in cucurbit[7]uril

Soowhan Choi, Sang Hyun Park, Albina Y. Ziganshina, Young Ho Ko, Jae Wook Lee, and Kimoon Kim*

National Creative Research Initiative Center for Smart Supramolecules and Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), San 31 Hyojadong, Pohang 790-784, Republic of Korea. Fax: (+82)54-279-8129; E-mail: kkim@postech.ac.kr

Determination of binding constants

The binding constants were determined by UV titration on a Hewlett-Packard 8453 diode array spectrophotometer. The experiments were carried out in 2 M citric acid / sodium hydroxide buffer solution (pH 3). The guest (trans-1, cis-1) concentration ($\left[\mathbf{1}^{0}\right]$) was held constant $\left(6 \times 10^{-5} \mathrm{M}\right)$ and the $\mathrm{CB}[7]$ concentration $\left(\left[\mathrm{CB}[7]^{0}\right]\right)$ was varied $\left(0-2.4 \times 10^{-4} \mathrm{M}\right)$. The concentration of trans-1 was calculated by using molar absorption coefficient at 296 nm $\left(\varepsilon_{\text {trans }-1}=25800 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) .{ }^{1}$ From this data, the molar absorption coefficients of cis-1, trans$\mathbf{1} \subset \mathrm{CB}[7]$ and cis-1 $\subset \mathrm{CB}[7]$ were estimated to be $9100 \mathrm{M}^{-1} \mathrm{~cm}^{-1}, 20800 \mathrm{M}^{-1} \mathrm{~cm}^{-1}, 7900 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ respectively. Fig. S1 shows the gradual change in UV-vis absorption spectra of trans-1 and cis-1 with the addition of $0-4$ equivalents of $\mathrm{CB}[7]$. The effect of molar ratio $\left[\mathbf{1}^{0}\right] /\left[\mathrm{CB}[7]^{0}\right]$ change on the absorbance of $\mathbf{1}$ at 296 nm is shown on Fig. S2.

The stability constants were calculated by using modified Rose-Drago equation: ${ }^{2}$ The RoseDrago expression for the stability constant $K=[\mathbf{1} \subset \mathrm{CB}[7]] /[\mathbf{1}] \times[\mathrm{CB}[7]]$, for the reaction $\mathbf{1}+$ $\mathrm{CB}[7]=\mathbf{1} \subset \mathrm{CB}[7]$, where [1], [CB[7]] and [1 $\subset \mathrm{CB}[7]]$ represent equilibrium concentration of $\mathbf{1}, \mathrm{CB}[7]$ and $\mathbf{1} \subset \mathrm{CB}[7]$, respectively, is:
$\left(\left[\mathbf{1}^{0}\right]+\left[\mathrm{CB}[7]^{0}\right]\right) / \Delta \varepsilon_{1 \subset \mathrm{CB}[7]}+1 /\left(K \times \Delta \varepsilon_{1 \subset \mathrm{CB}[7]}\right)=\left(\left[\mathbf{1}^{0}\right] \times\left[\mathrm{CB}[7]^{0}\right] / \Delta A\right)+\Delta A / \Delta \varepsilon_{1 \subset \mathrm{CB}[7]}^{2}$
in which, $\Delta \varepsilon_{1 \subset \mathrm{CB}[7]}=\varepsilon_{1}-\varepsilon_{1 \subset \mathrm{CB}[7]}$, where $\varepsilon_{1}, \varepsilon_{1 \subset \mathrm{CB}[7]}$ represent the molar absorption coefficients of $\mathbf{1}$ and $1 \subset \mathrm{CB}[7]$, respectively; $\Delta A=A-A_{0}, A_{0}$ is the initial solution absorbance at 296 nm in absence of CB[7] and A is the observed solution absorbance in the presence of CB[7].

According to Equation (1) a plot of $\left(\left[\mathbf{1}^{0}\right] \times\left[\mathrm{CB}[7]^{0}\right] / \Delta A\right)+\Delta A / \Delta \varepsilon^{2}{ }_{1 \subset \mathrm{CB}[7]}$ versus $\left[\mathbf{1}^{0}\right]+$ $\left[\mathrm{CB}[7]^{0}\right]$ gives a straight line with an intercept of $1 /\left(K \times \Delta \varepsilon_{1 \subset \mathrm{CB}[7]}\right)$, from which the constants were calculated (Fig. S3).

Fig. S1 UV spectral change during addition of $\mathrm{CB}[7]$ to (A) trans- $\mathbf{1}$ solution, and (B) cis-1 solution.

Fig. S2 The effect of molar ratio $\left[\mathrm{CB}[7]^{0}\right] /\left[\mathbf{1}^{0}\right]$ change on the absorbance of (A) trans-1, and (B) cis-1, at $\lambda_{\max } 296 \mathrm{~nm}$. The plots also show that the complexes are formed in a $1: 1$ molar ratio.

Fig. S3 Plots of Equation (1) for 1:1 complexation of CB[7] with (A) trans-1, and (B) cis-1.

Fig. $\mathbf{S 4}{ }^{1} \mathrm{H}$ NMR spectrum of trans $\mathbf{- 1}$ in the presence of 0.6 equivalent $\mathrm{CB}[7]$ showing two sets of signals, one for free trans-1 and the other for trans-1 $\subset \mathrm{CB}[7]$.

References

1 Y. Zhao, V. Khodorkovsky, J. Cohen and Z. Priel, J. Photochem. Photobiol., A, 1996, 99, 23.

2 M. Nishida, D. Ishii, I. Yoshida and S. Shinkai, Bull. Chem. Soc. Jpn., 1997, 70, 2131.

