Unusual alkyl group activation and cationic complex formation from a novel lutetium dialkyl complex supported by a tridentate monoanionic ligand

Thomas M. Cameron, John C. Gordon,* Ryszard Michalczyk and Brian L. Scott Los Alamos National Laboratory, MS J-514, Los Alamos, USA.

General Methods

All reactions were conducted under a dry argon atmosphere using standard Schlenk techniques and all compounds were handled in a helium or argon-filled dry box. All solvents were distilled under argon from sodium or sodium benzophenone ketyl or passed over activated alumina, stored over molecular sieves, and degassed prior to use. All NMR spectra were obtained on a Bruker Avance 300 with C_6D_6 , C_7D_8 , CD_2Cl_2 , or d_8 -THF as solvents and referenced to residual solvent peaks unless otherwise noted. The ¹H and ¹³C NMR resonances for **3** were assigned by standard COSY, NOESY, HETCOR, HMQC,¹ and HMBC.^{1,2} The HMBC and HMQC experiments were acquired on a Bruker DRX-500 with triple axis gradients. The 2D spectra are included at the end of the ESI.

$$[2-{(2,6-Pr_{2}C_{6}H_{3})N=CMe}-6-{(2,6-Pr_{2}C_{6}H_{3})NCMe_{2}C_{5}H_{3}N}]Lu(CH_{2}SiMe_{3})_{2}$$
 (2): To

a stirring, toluene solution of Lu(CH₂SiMe₃)₃(THF)₂ (1.20 g, 2.07 mmol, 15 ml toluene) was added a toluene solution of **1** (1.03 g, 2.07 mmol, 20 ml toluene). The resulting mixture turned red immediately, was stirred for 3 h and then concentrated to approximately 20 ml. Placing the red solution at -30 °C overnight induced the crystallization of **2** as red microcrystals that were isolated by filtration, washed with hexanes, and dried under vacuum (35 % isolated yield). ¹H NMR (CD₂Cl₂, -50 °C): δ -1.81 (d, ²*J*_{H-H} = 11.5 Hz, 1H, C*H*₂Lu), -1.66 (d, ²*J*_{H-H} = 11.5 Hz, 1H, C*H*₂Lu), -1.24 (d, ²*J*_{H-H} = 11.5 Hz, 1H, C*H*₂Lu), -0.75 (ov, 1H, C*H*₂Lu, overlap confirmed by COSY), -0.75 (s, 9H, Si(C*H*₃)₃), 0.90 (d, ³*J*_{H-H} = 6.5 Hz, 3H, isopropyl C*H*₃), 0.95 (d, ³*J*_{H-H} = 6.5 Hz, 3H, isopropyl C*H*₃), 1.02 (d, ³*J*_{H-H} = 6.5 Hz, 3H, isopropyl C*H*₃), 1.10 (s, 3H, NCC*H*₃), 1.19 (ov, m, 12H, isopropyl C*H*₃), 1.31 (d, ³*J*_{H-H} = 6.5 Hz, 3H,

isopropyl CH₃), 1.67 (s, 3H, NCCH₃), 2.30 (s, 3H, N=CCH₃), 2.64 (m, 1H, isopropyl methine), 2.86 (m, 1H, isopropyl methine), 3.12 (m, 1H, isopropyl methine), 4.22 (m, 1H, isopropyl methine), 7.0-7.3 (ov, m, 6H, diisopropyl aryl protons), 7.84 (d, ${}^{3}J_{H-H} = 8.0$ Hz, C_5H_3N -*m*-proton), 7.89 (d, ${}^{3}J_{H-H} = 7.5$ Hz, C_5H_3N -*m*-proton), 8.13 (t, ${}^{3}J_{H-H} = 8.0$ Hz, C₅H₃N-*p*-proton). ¹³C NMR (reported ${}^{1}J_{C-H}$ are from the gated ${}^{13}C$ spectrum, CD₂Cl₂, -50 °C): 3.1 (Si(CH₃)₃, ${}^{1}J_{C-H} = 117$ Hz), 3.3 (Si(CH₃)₃, ${}^{1}J_{C-H} = 117$ Hz), 20.2, 22.6, 23.2, 24.4, 24.7, 25.0, 25.2, 26.1, 26.9, 27.6, 27.8, 28.0, 28.1, 29.6, 37.3, 39.8 (LuCH₂, ${}^{1}J_{C-H} = 99$ Hz), 43.6 (LuCH₂, ${}^{1}J_{C-H} = 99$ Hz), 67.9, 122.5, 122.7, 122.8, 123.2, 124.2, 125.0, 126.2, 127.2, 138.9, 139.1, 140.3, 141.8, 147.2, 148.5, 148.8, 149.1, 176.8, 177.4. ¹³C NMR {¹H} (CD₂Cl₂, 25 °C): δ 4.0, 20.5, 24.5, 25.2, 27.5, 28.2, 29.3, 43.5 (br), 68.2, 122.9, 123.3, 123.6, 125.2, 126.1, 127.9, 139.7, 140.7, 143.1, 147.8, 149.4, 150.3, 177.5, 178.6. $[2-{(2,6-Pr_{2}^{i}C_{6}H_{3})N=CMe}-6-{(2,6-Pr_{2}^{i}C_{6}H_{3})NCMe_{2}}C_{5}H_{3}NLu(CH_{2}SiMe_{2})$ CH₂SiMe₃)(THF)][MeB(C₆F₅)₃] (3): To a CH₂Cl₂ solution of 2 (0.070g, 8.28x10⁻⁵ mol, 5.0 ml CH₂Cl₂) was added 2.0 eq of THF (13.50 μ l, 1.66x10⁻⁴ mol) followed by 1.0 eq of $B(C_6F_5)_3$ (0.042, 8.28x10⁻⁵ mol, 0.5 ml CH₂Cl₂). After 2h of stirring the solvent was removed under vacuum giving **3** as a red solid in 88 % yield by NMR techniques. 1 H NMR (CD₂Cl₂, 25 °C): δ -0.83 (d, ²J_{H-H} = 11.0 Hz, 1H, CH₂Lu), -0.63 (d, ²J_{H-H} = 13.5 Hz, 1H, SiCH₂Si), -0.46 (d, ${}^{2}J_{H-H} = 13.5$ Hz, 1H, SiCH₂Si), -0.45 (d, ${}^{2}J_{H-H} = 11.0$ Hz, 1H, CH₂Lu), -0.25 (s, 3H, LuCH₂Si(CH₃)), -0.21 (s, 3H, LuCH₂Si(CH₃)), -0.09 (s, 9H, Si(CH₃)₃), 0.45 (br, 3H, CH₃B), 0.90 (d, ${}^{3}J_{H-H} = 7.0$ Hz, isopropyl CH₃), 0.99 (d, ${}^{3}J_{H-H} =$ 6.5 Hz, isopropyl CH₃), 1.10 (d, ${}^{3}J_{H-H} = 6.5$ Hz, isopropyl CH₃), 1.12 (d, ${}^{3}J_{H-H} = 7.0$ Hz, isopropyl CH₃), 1.19 (d, ${}^{3}J_{H-H} = 7.0$ Hz, isopropyl CH₃), 1.25 (d, ${}^{3}J_{H-H} = 7.0$ Hz, isopropyl CH₃), 1.28 (d, ${}^{3}J_{H-H} = 7.0$ Hz, isopropyl CH₃), 1.31 (s, 3H, NCCH₃), 1.35 (d, ${}^{3}J_{H-H} = 6.5$

Hz, isopropyl CH₃), 1.58 (ov, m, 2H, β-THF protons), 1.67 (ov, m, 2H, β-THF protons), 1.90 (s, 3H, NCCH₃), 2.34 (m, 1H, isopropyl methine), 2.50 (s, 3H, N=CCH₃), 2.62 (m, 2H, α-THF protons), 2.90 (ov, m, 1H, isopropyl methine), 2.93 (ov, m, 1H, isopropyl methine), 3.23 (m, 2H, α-THF protons), 4.12 (m, 1H, isopropyl methine), 7.14 (ov, m, 1H, diisopropyl aryl-*m*-proton), 7.14 (ov, m, 1H, diisopropyl aryl-*p*-proton), 7.25 (m, 1H, diisopropyl aryl-*m*-proton), 7.30 (m, 1H, diisopropyl aryl-*m*-proton), 7.42 (ov, m, 1H, diisopropyl aryl-*m*-proton), 7.42 (ov, m, 1H, diisopropyl aryl-*p*-proton), 8.02 (d, ${}^{3}J_{H-H} = 8$ Hz, C₅H₃N-*m*-proton), 8.06 (d, ${}^{3}J_{H-H} = 8$ Hz, C₅H₃N-*m*-proton), 8.32 (t, ${}^{3}J_{H-H} = 8$ Hz, C₅H₃N-*p*-proton). ¹³C NMR (CD₂Cl₂, 25 °C, reported ${}^{1}J_{C-H}$ are from the gated ${}^{13}C$ spectrum, C_6F_5 resonances not reported, H_3CB resonance not observed): $\delta 1.7$ (Si(CH₃)₃, ${}^{1}J_{C-H} = 118 \text{ Hz}$, 4.3 (SiCH₃, ${}^{1}J_{C-H} = 117 \text{ Hz}$), 4.5 (SiCH₃, ${}^{1}J_{C-H} = 117 \text{ Hz}$), 8.4 $(\text{Si}(\text{CH}_3)_2\text{CH}_2\text{Si}(\text{CH}_3)_3, {}^1J_{\text{C-H}} = 108 \text{ Hz}), 20.7, 23.0, 24.0, 24.9, 25.2, 25.6, 25.7 \text{ (THF }\beta\text{-}$ carbon), 26.2, 27.2, 27.5, 27.7, 28.7, 28.9, 29.1, 30.8, 39.4, 47.4 (t, ${}^{1}J_{C-H} = 96$ Hz, CH₂Lu), 69.8, 73.0 (THF α-carbon), 124.7, 124.8, 125.5, 125.6, 126.1, 126.9, 127.6, 129.8, 139.5, 139.8, 140.2, 141.9, 142.9, 149.5, 149.6, 150.1, 179.1, 181.1. ¹⁹F NMR $(CD_2Cl_2, 25 \text{ °C})$: δ -134.34 (d, ${}^{3}J_{F-F} = 20.5 \text{ Hz}$, o-fluorine), -166.5 (t, ${}^{3}J_{F-F} = 20.5 \text{ Hz}$, pfluorine), -169.07 (m, *m*-fluorine). ¹¹B NMR (CD₂Cl₂, 25 °C): δ -12.0. See Figure 1 for the full assignments for **3**. Note that the positions of the diisopropyl aryl rings were assigned by NOESY spectroscopy. For example an nOe between protons at 4.12 ppm and 1.90 ppm put those fragments on the same side of the molecule and nOes between protons at 2.50 ppm and 0.99 ppm put those fragments on the same side of the molecule.

Figure 1. Chemical shift assignment for **3**. ¹³C resonances are underlined. The anion has been omitted.

Hydrolysis of 3: an excess of H_20 was added to an NMR sample of **3**. Formation of $(CH_3)_3SiCH_2Si(CH_3)_3$ was confirmed by comparison with the ¹H NMR spectrum of an authentic sample of $(CH_3)_3SiCH_2Si(CH_3)_3$.

2D NMR Spectra of 3.

 ∞

HETCOR of 3

9

NOESY of 3

NOESY of 3

increased to eliminate the folding of the resonance at 1.7 ppm in this spectrum.

¹H NMR spectrum of **2** (CD₂Cl₂, -50°C, contains residual toluene).

¹H NMR spectrum of **3** (CD₂Cl₂, 25° C).

References

- 1 R. E. Hurd and B. K. John, *J. Mag. Reson.*, 1991, **91**, 648.
- 2 A. Bax and M. F. Summers, J. Am. Chem. Soc., 1986, 108, 2093.