Supplementary Data

Expanding the Repertoire of Pyrrolidyl PNA analogues for DNA/RNA Hybridization Selectivity: Aminoethylpyrrolidinone PNA(*aepone*-PNA)

Nagendra K. Sharma and Krishna N. Ganesh*

Division of Organic Chemistry (Synthesis) National Chemical laboratory, Pune 411008, INDIA. Fax: 91 20 589 3153; Tel: 91 20 589 3153; E-mail: kng@ems.ncl.res.in

CONTENTS

Experimental	2-5
¹ H and ¹³ C NMR of 3-7	6-10
Mass spectra (FAB/LC) of 3-7	11-15
MALDI-TOF 9-11	16-18
HPLC of 9-11	19-20
UV Melting	21,22
Job's plot	22

Experimental Section:

General. Reagents were purchased from Lancaster, UK. DMF was dried by vacuum distillation over P₂O₅, THF refluxed over sodium, pyridine refluxed over KOH then CaH, CH₂Cl₂ refluxed over CaH and CH₃CN refluxed over CaH then distilled under anhydrous conditions. TLC were done using pre-coated silica gel plates 1.0554 DC-Alufolien 20 x 20 cm Kieselgel 60 F₂₅₄ from Merck. Optical rotation of compounds was recorded on ADP220 Bellingham + Staneley polarimeter. ¹H NMR (200 MHz) and ¹³C NMR were recorded in solvent CDCl₃ and values are quoted in δ ppm. Mass spectra were recorded using ESI (electron spray Ionization) on Finnigan MAT and MALDI-TOF using Micromass.

1-(N-Boc-aminoethyl)–4R-O-mesyl-5-one-2S-proline methyl ester (3). To a vigorous stirred solution of compound **2** (380 mg, 0.95 mmol) in CH₃CN : CCl₄ (1:1, 10 mL), an aqueous solution (7.5 mL) of NaIO₄ (2.0 g, 9.08 mmole) and RuCl₃ (catalytic amount, 0.02 mmol) was added. After 30 min, the reaction was quenched by addition of isopropyl alcohol or 20% of aqueous solution (10 mL) of NaHSO₃ and stirred for another 20 min and the reaction mixture was concentrated under vacuum. The residue was taken into ethyl acetate (20 mL) and washed with water, the organic extract dried over Na₂SO₄ and concentrated to dryness. The resultant product was purified by column chromatography to obtain **3** as solid. Yield: 177 mg (45%). **3** was crystallized in mixture CH₂CL₂ and MeOH. [α]³⁰_D +80.8 (c 0.47, CHCl₃), v_{max} cm⁻¹ 1747, 1731, 1714, 1693, 1681, ¹H NMR, δ 5.3 (dd, J = 5.6, J = 5.4, 1H), 4.8 (bs, 1H), 4.5 (m,1H), 3.9 (s,3H), 3.8 (m,1H), 3.4 (s, 3H), 3.2 (m, 2H), 3.1 (m, 2H), 2.8 (m, 1H), 1.4 (s, 9H). ¹³C NMR CDCl₃ δ 170.8, 169.4, 155.8, 79.3, 75.5, 56.3, 52.6, 42.9, 39.3, 37.4, 30.0, 28.1, (m/z): 380 (M⁺).

1-(N-boc-aminoethyl)-4S-(thymin-1-yl)-5-one-2S-proline methyl ester (4). 3 (200 mg, 0.52 mmol), Thymine (80 mg, 0.63 mmol), K_2CO_3 (86.9 mg, 0.63 mmol) and catalytic amount of 18crown-6 (54 mg, 0.15 mmol) in dry DMF (5 mL) were stirred at 65 ^oC overnight under N₂ atmosphere. The solvent was evaporated off and the residue was purified by chromatography (3% MeOH in CH₂Cl₂) to obtain **4** as white foam. Yield: (65 mg, 30.0%), $[\alpha]^{25}{}_{D}$ -21.6 (c 0.6 , CHCl₃), v_{max} cm⁻¹ 1731, 1701, 1514, ¹H NMR, δ 9.2 (bs,1H), 7.2 (bs,1H), 5.25 (bs,1H), 5.0 (m,1H), 4.5 (m,1H), 3.9 (s,3H), 3.5(m,2H), 3.25 (m,2H), 2.5 (m,1H), 2.0 (s,3H), 1.9 (m,1H), 1.49 (s,9H), ¹³C NMR (CDCl₃) δ 171.4, 170.0, 164.0, 156.2, 151.0, 139.3, 137.4, 111.6, 79.5, 56.6, 52.7, 43.1, 37.9, 29.1, 28.2, 12.1, m/z 410.0 (M⁺).

1-(N-boc-aminoethyl)-4S-(N⁴-benzyloxycarbonylcytosin-1-yl)-5-one-2S-proline methyl ester (5). Compound **3** was used to obtain **5** as foam by similar procedure as used for **4**. Yield: (36.0%), $[\alpha]^{25}{}_{D}$ +5.0 (c 0.8 , CHCl₃), v_{max} cm⁻¹ 1749, 1706, 1685, ¹H NMR, δ 7.5 (m,1H), 7.5 (s,5H), 6.5 (m,1H), 5.3 (s,4H), 3.15 (bs,5H), 2.0 (m,1H), 1.48 (s,9H), ¹³C NMR (CDCL₃) δ 172.0, 170.0, 162.6, 159.4, 156.1, 152.4, 148.4, 134.9, 128.3, 99.5, 67.5, 57.7, 56.6, 52.4, 43.0, 37.7, 28.8, 28.1, m/z 530.0 (M⁺).

1-(N-boc-aminoethyl)-4S-(N⁶-benzoyladenin-9-yl)-5-one-2S-proline methyl ester (6). Compound 3 was used to obtain 6 as foam by same procedure as used for 4. Yield (57%) of 6 as white foam. $[\alpha]^{25}_{D}$ + (c, CHCl₃), ν_{max} cm⁻¹ 1708, 1610, ¹H NMR, δ 8.8 (m,1H), 8.2 (m, 1H), 8.0 (m, 1H), 7.5 (m, 3H), 5.5 (m, 1H), 5.0 (m, 1H), 3.9 (s, 3H), 3.7 (m, 1H), 3.4 (m, 2H), 3.2 (m, 2H), 2.8 (m, 2H), 1.49 (s, 9H), ¹³C NMR (CDCl₃) δ 171.0, 169.0, 158.9, 155.8, 152.1, 149.6, 142.6, 141.6, 133.5, 132.9, 128.4, 127.7, 95.8, 79.3, 57.5, 54.3, 52.6, 43.1, 37.4, 30.1, 28, m/z 523 (M⁺).

1-(N-boc-aminoethyl)-4S-(2-amino-6-chloropurin-9-yl)-5-one-2S-proline methyl ester (7). Compound **3** was used to obtain 7 by procedure similar to that for **4**. Yield: (45.0 %), $[\alpha]^{25}{}_{D}$ +10.0 (c 0.2, CHCl₃), ν_{max} cm⁻¹ 1714, 1706, 1610.45, ¹H NMR (200 MHz, CDCL₃) δ 7.6-7.9 (m, 1H), 5.4(m, 1H), 5.2 (m, 2H), 4.5 (m, 1H), 3.8 (bs, 4H), 3.5 (m, 2H), 3.2 (m, 2H), 2.7 (m, 2H), 1.5(s, 9H), ¹³C NMR(CDCl₃) δ 171.0, 170.0, 158.9, 155.9, 142.4 141.6, 125.2, 95.9, 79.9,57.79, 52.71, 43.0, 73.4, 30.0, 29.2, 28.1, m/z 453 (M⁺).

General protocol for solid phase synthesis of PNA.

Synthesis of PNA was carried out using BOC-β-alanine derivatized Merrifield resin (Pharmecia) (0.15 mmol/g substitution). The synthesis cycle was as follows: deprotection: 50% TFA in DCM (15 min), wash with DCM, DMF and DCM , neutralize (5% DIEA in DCM), wash DCM, DMF and DCM), coupling (**4b**/HOBT/HBTU/DIEA in DMF, 4 eq, 1.5 h) capping (10% Ac₂O/Pyridine in DCM), wash (DCM, DMF and DCM). Deprotection and amide Coupling reaction was monitored by Kaiser's test. The purity of PNA was ascertained on an analytical RP C18 column.

8. H_2N -T-T-T-T-T-T-F- β -ala-COOH (*aeg*-T₈)

9. H_2N -T-T-T-T-T-T-**t**- β -ala-COOH

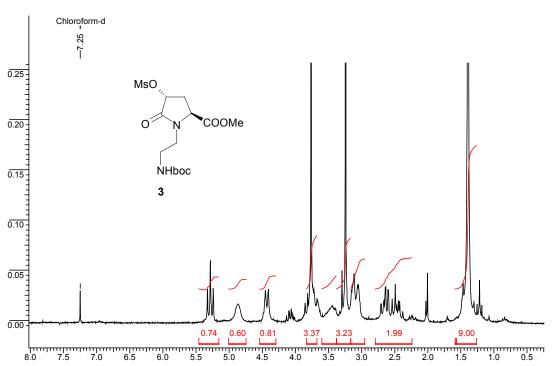
 M_r (MALDI-TOF) found 2232.0, calcd. For M =2230

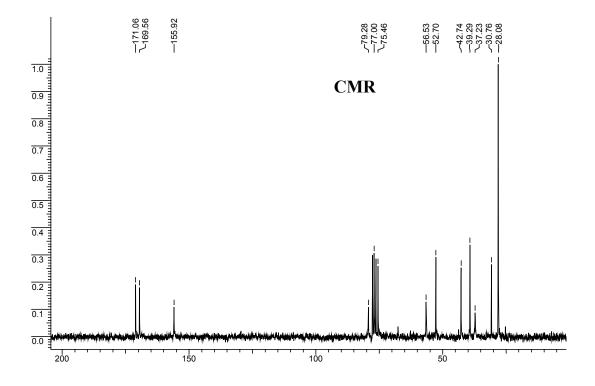
10. H_2N -T-T-T-**t**-T-T-**t**- β -ala-COOH

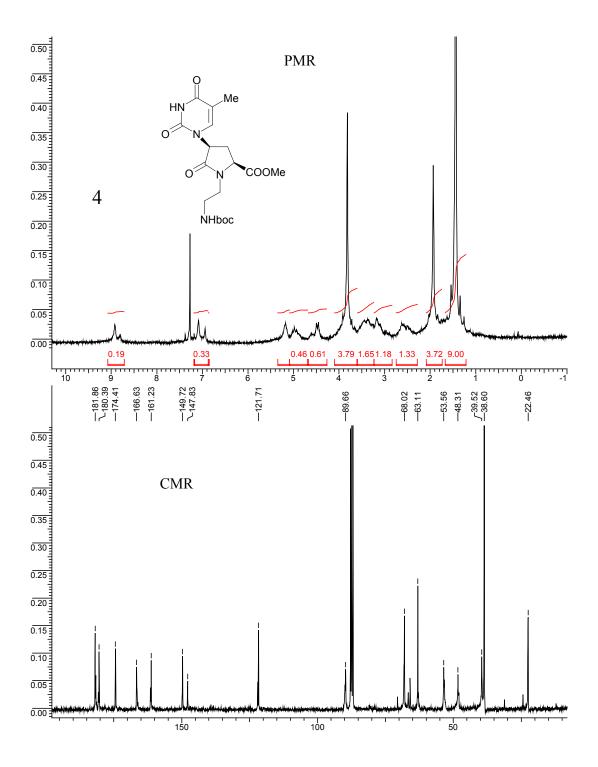
 M_r (MALDI-TOF) found 2244.0, calcd. For M =2243

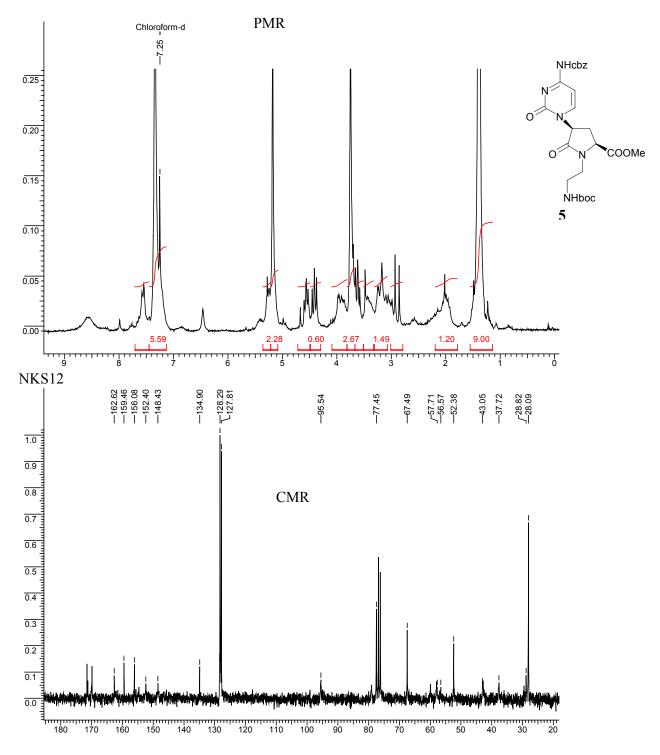
11. H₂N-**t**-**t**-**t**-**t**-**t**-**t**-**f**-ala-COOH (*aepone*-**t**₈)

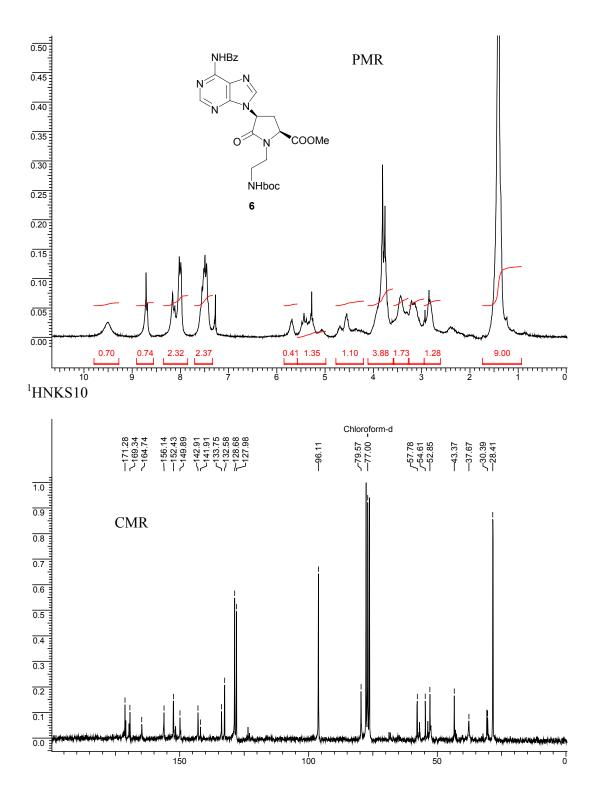
 M_r (MALDI-TOF) found 2315.0, calcd. For M =2315

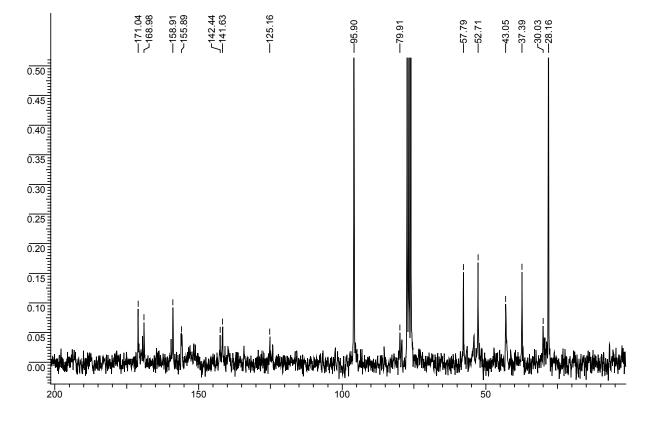

12 H₂N-*t*-*t*-*t*-*t*-*t*-*t*-*t*- β -ala-COOH (*aep*-*t*₈)

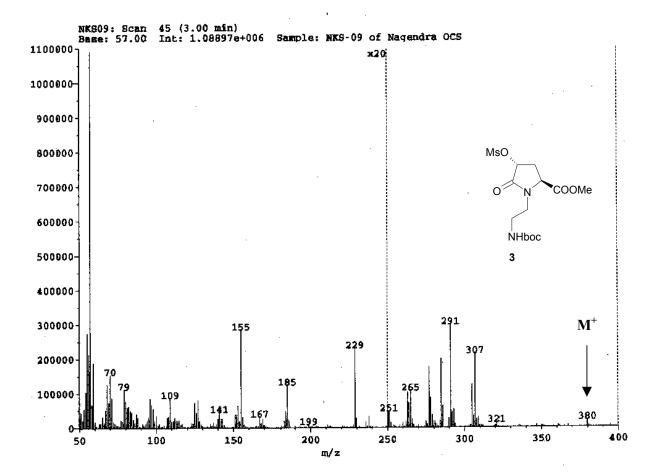

DNA was synthesized using standard procedure on automated synthesizer.

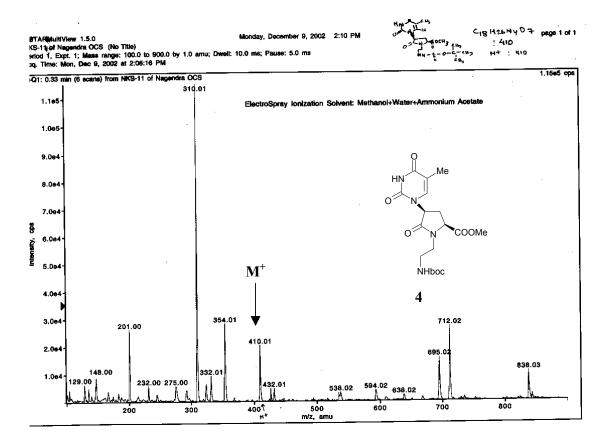

13 d(GCAAAAAAACG) (DNA)

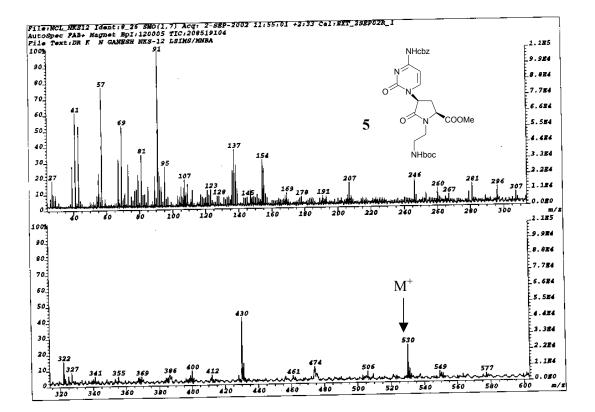

UV-T_m experiments.

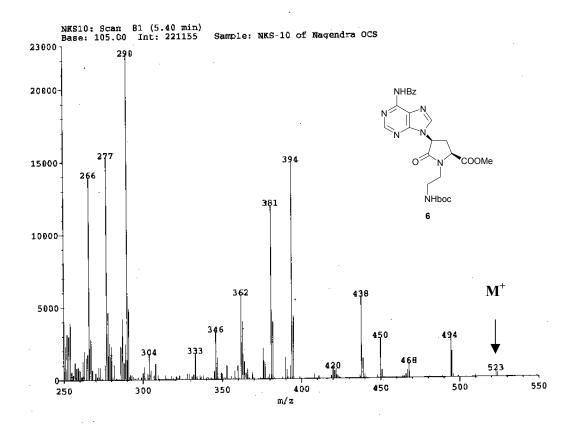

UV melting experiments were performed on Lambda-35 UV Spectrometer (Perkin-Elmer) equipped with a thermal melt system, PTP-6 Peltier Temperature Programmer with water circulator Thermohake K20. The sample for Tm measurement was prepared by mixing calculated amount of stock oligonucleotide and PNA solutions together in 2 mL of sodium phosphate buffer (pH 7.1). The samples 2 mL were transferred to quartz cell and sealed with Teflon stopper after degassing with nitrogen gas for 15 min and equilibrated at the starting temperature for at least 30 min. The OD

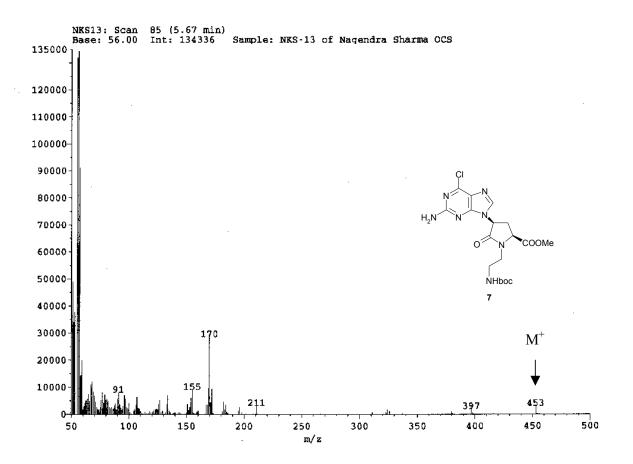




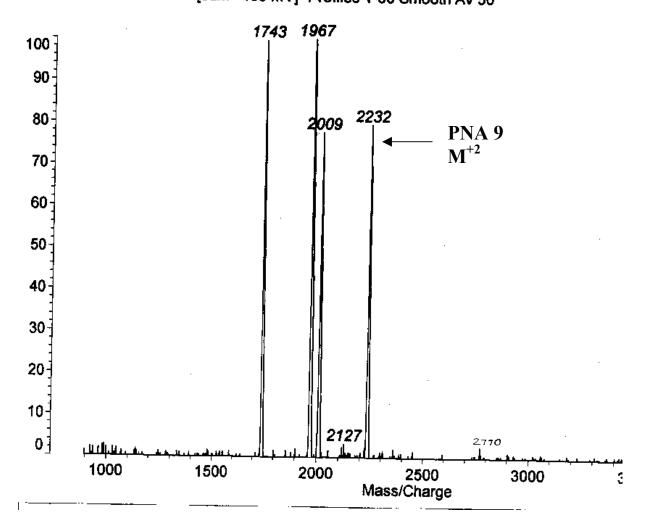


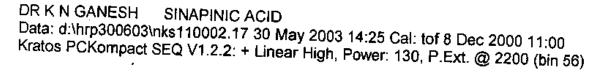


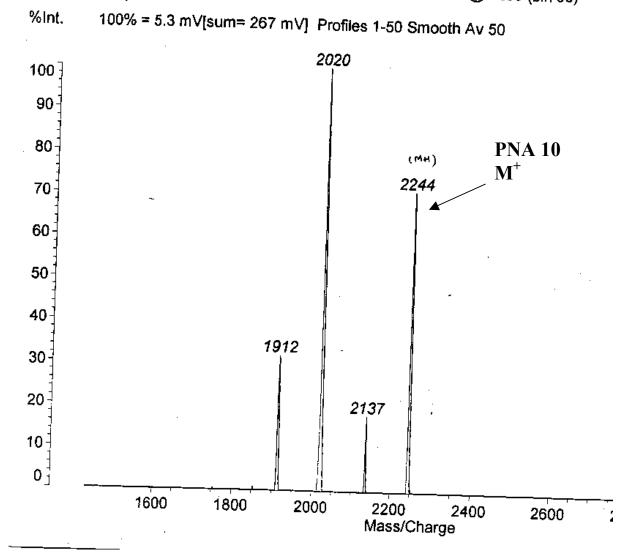

CMR

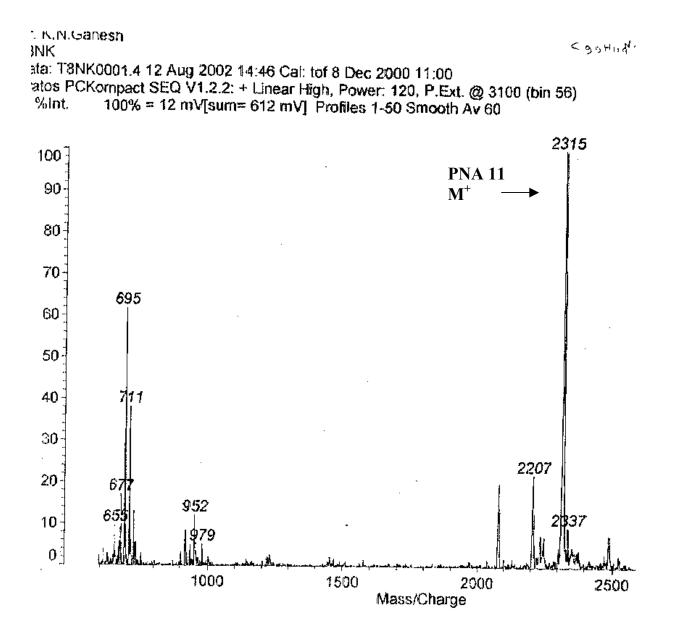


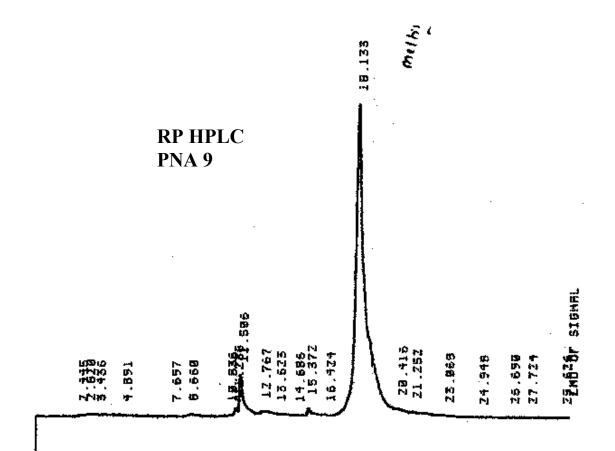
 R K N GANESH

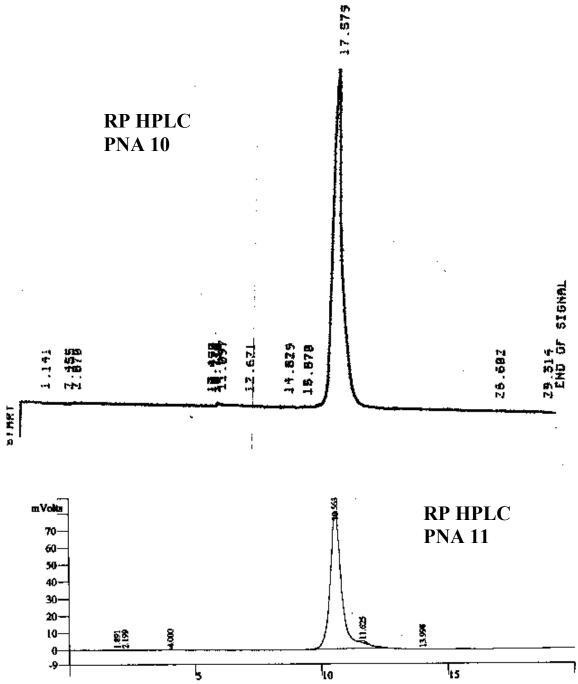

 ^C 22 Hight N


 IKS-12


 ^K x S120002.17 25 Nov 2002 12:30 Cal: tof 8 Dec 2000 12:00


 rates PCKompact SEQ V1.2.2: + Linear High, Power: 128, P.Ext. @ 3000 (bin 56)


 %Int.
 100% = 4.0 mV[sum= 199 mV] Profiles 1-50 Smooth Av 50



Thermal Melting Profile:

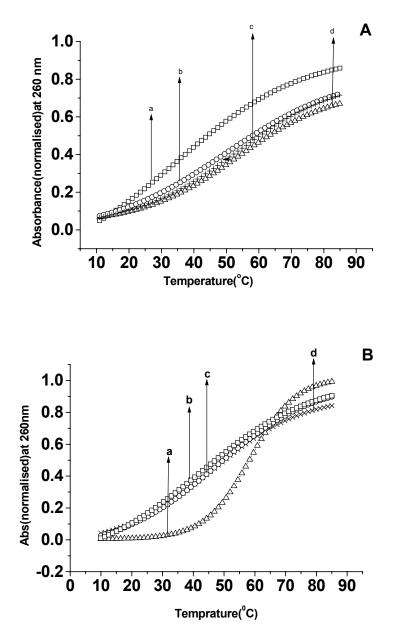
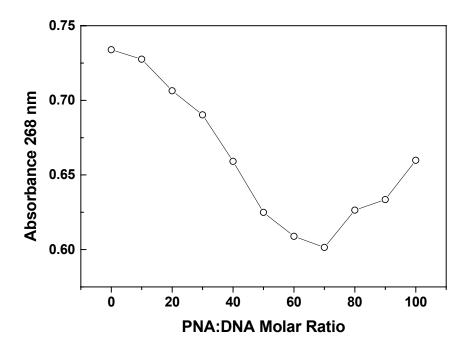
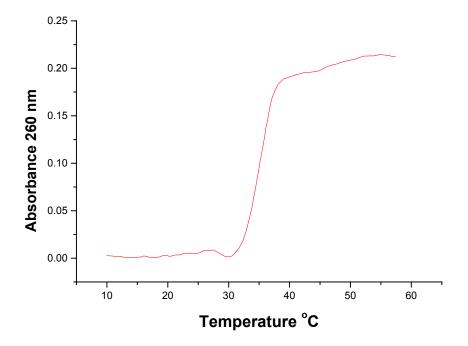




Figure 2. Melting absorbance (260nm)-temperature profiles, A. PNA:DNA 13 hybrids and B. PNA:poly **rA** hybrids a. 8 b.9 c.10 d.11

Job's plot for aepone-PNA 11: DNA 13, indicating 2:1 binding

Melting profile for PNA 12: poly rA