Supplementary data

Controlled crystallization of mixed-ligand complexes of

1,3-bis(4-pyridyl)propane-*N*,*N*'-dioxide with metal(II) thiocyanates:

isostructurality in coordination networks bearing different mono- and

di-nuclear nodes

Lin-Ping Zhang,^a Wen-Jie Lu,^{ab} and Thomas C. W. Mak^{*a}

^aDepartment of Chemistry, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, P. R. China ^bDepartment of Chemical and Environmental Engineering, Wuyi University, Jiangmen, Guangdong Province, P. R. China

Experimental Procedures:

General:

As starting materials, 4,4'-trimethylenedipyridine (Aldrich), 35% hydrogen peroxide (Junsei), CoCl₂·6H₂O (Merck), MnCh·4H₂O (Beijing), ZnCh (Riedel), CdCh·2H₂O (BDH) and KSCN (Beijing) were obtained commercially and used without further purification. Elemental analyses of C, H and N were performed by the MEDAC LTD

Vrunel Science Center, United Kingdom. IR spectra were recorded with a Nicolet Impact 420 FT-IR spectrometer using KBr pellets. ¹H NMR spectra was taken at 300Hz with a Bruker-300 spectrometer using D₂O as solvent. Thermal stability of samples was measured on a Hi-Res TGA 2950 Thermogravimetric Analyzer from 50°C to 900°C under a nitrogen atmosphere at a heating rate of 15°C/min.

Synthesis of $[CoL(H_2O)(SCN)_2]_{¥}$, 1. This complex was obtained by the reaction of CoCl₂·6H₂O, KSCN and L ligand at the molar ratio 1:2:1. To a solution of CoCl₂·6H₂O (0.047g, 0.2mmol) in H₂O (3mL), 2mL KSCN (0.04g, 0.41mmol) aqueous solution was added. Then, with stirring, an aqueous solution of L (0.046g, 0.2mmol) 6mL was added. The result solution was stirred at 70°C for about 10 minutes and then filtered. The filtrate was allowed to stand at room temperature. Several days later, dark purple scale-like crystals of **1** were obtained. Yield: 0.030g (36%). Anal. Calcd. for C₁₅H₁₆CoN₄O₃S₂: C, 42.55; H, 3.81; N, 13.23%. Found: C, 42.50; H, 3.80; N, 13.08%. IR (KBr, cm⁻¹): 3415w, 3234w, 3120w, 2060vs, 1629w, 1489m, 1448w, 1212m, 850m, 789w, 729w.

Synthesis of $[CdL(H_2O)(SCN)_2]_{*}$, 2. This complex was obtained as colorless scale-like crystals in a similar procedure as for 1 by the reaction of $CdCl_2 \cdot 2H_2O$, KSCN and L ligand at the molar ratio 1:2:1. Yield: 67%. Anal. Calcd. for $C_{15}H_{16}CdN_4O_3S_2$: C, 37.78; H, 3.38; N, 11.75%. Found: C, 37.70; H, 3.38; N, 11.75%. IR (KBr, cm⁻¹): 3415-3183*brw*, 3102*m*, 2941*w*, 2858*w*, 2111*s*, 2057*vs*, 1637*w*, 1484*s*, 1448*m*, 1214*s*, 1175*m*, 1114*w*, 844*m*, 766*w*, 729*w*. Synthesis of $[MnL(H_2O)(SCN)_2]_{\$}$, 3. This complex was obtained as pale yellow scaly crystals by the reaction of $MnCl_2 \cdot 4H_2O$, KSCN and L ligand at the molar ratio 1:2:1 in a similar method as 1. Yield: 0.040g (48%). Anal. Calcd. for $C_{15}H_{16}MnN_4O_3S_2$: C, 42.96; H, 3.85; N, 13.36%. Found: C, 43.09; H, 3.92; N, 12.97%. IR (KBr, cm⁻¹): 3415*m*, 3200*w*, 3113*w*, 2049*vs*, 1635*w*, 1488*m*, 1441*w*, 1213*m*, 856*m*, 796*w*, 722*w*.

Synthesis of $[ZnL(H_2O)(SCN)_2]_{¥}$, **4.** Complex **4** was synthesized as colorless scaly crystals as the case of **1** with the molar ratio of ZnCl₂, KSCN and L ligand at 1:2:1. Yield: 64%. Anal. Calcd. for C₁₅H₁₆ZnN₄O₃S₂: C, 42.06; H, 3.77; N, 13.09%. Found: C, 41.99; H, 3.76; N, 12.92%. IR (KBr, cm⁻¹): 3434*m*, 3230*w*, 3121*w*, 2064*vs*, 1630*w*, 1494*m*, 1447*w*, 1213*m*, 856*m*, 782*w*, 722*w*.

Synthesis of $[CoL_2(SCN)_2]_x$, 5. Complex 5 was synthesized as red block-like crystals in the same way as 1 but with a starting molar ratio of CoCl₂·6H₂O, KSCN and L ligand at 1:2:6. Yield: 0.056g (45%). Between the molar ratios Co(II)/L 1:1 and 1:6, both compounds 1 and 5 were obtained from the same crude solution. During slow evaporation of the filtrate at room temperature, compound 1 crystallized first. After removal of the crystals of compound 1, red block-like crystals of compound 5 were obtained after several days. When the molar ratio L/Co(II) exceeds 6, compound 5 is the only product. Anal. Calcd. for C₂₈H₂₈CoN₆O₄S₂: C, 52.91; H, 4.44; N, 13.22%. Found: C, 52.50; H, 4.39; N, 13.09%. IR (KBr, cm⁻¹): 3432w, 3111w, 3052w, 2088vs, 1622w, 1486s, 1440w, 1210s, 850*m*, 802w, 729w. Synthesis of $[CdL_2(SCN)_2]_{\mathfrak{X}}$, 6. Complex 6 was synthesized as colorless blocks in a similar way as 2, but with the molar ratio $CdCl_2 \cdot 2H_2O$: KSCN: L changed from 1:2:1 to 1:2:6. Yield: 60%. And between these two molar ratios, compound 2 and 6 were obtained in the same solution with compound 2 crystallizing out first. Anal. Calcd. for $C_{28}H_{28}CdN_6O_4S_2$: C, 48.80; H, 4.10; N, 12.20%. Found: C, 48.80; H, 4.01; N, 11.77%. IR (KBr, cm⁻¹): 3469*m*, 3113*w*, 3046*w*, 2072*vs*, 1649*w*, 1487*m*, 1447*w*, 1218*m*, 846*m*, 802*w*, 722*w*.

Synthesis of [MnL₂(H₂O)₂(SCN)₂], 7. When the molar ratio between MnC_b and L ligand (1:1) in the synthesis of compound 3 was increased to 1:2, during the slow evaporation of the filtrate at room temperature, compound 3 crystallized first. After removal of the crystals of 3, yellow block-like crystals of compound 7 were deposited several days later. Yield: 15%. With L/M increasing, compound 7 became the major product, but we could not obtain it as the only product till L/M was equal to 10. Anal. Calcd. for $C_{28}H_{32}MnN_6O_6S_2$: C, 50.37; H, 4.83; N, 12.59%. Found: C, 50.59; H, 4.91; N, 13.04%. IR (KBr, cm⁻¹): 3422w, 3100w, 2938w, 2065vs, 1649w, 1488m, 1440w, 1219m, 1179w, 850w, 802w, 735w.

Synthesis of $[ZnL_2(H_2O)_2(SCN)_2]$, 8. When a starting molar ratio between ZnC_b and L ligand was set at 1:10, slow evaporation of the filtrate at room temperature yielded crystals of compound 4. After removing the crystals of 4, colorless block-like crystals of compound 8 were obtained several days later. Yield: 10%. Compound 8 could not be obtained as the only product till L/M reached 10. Anal. Calcd. for C₂₈H₃₂ZnN₆O₆S₂: C,

49.60; H, 4.76; N, 12.39%. Found: C, 49.53; H, 4.47; N, 12.00%. IR (KBr, cm⁻¹): 3415w, 3093w, 2918w, 2085vs, 1655w, 1488m, 1454w, 1226m, 1179w, 856w, 809w, 735w.

X-ray Crystallography:

Single-crystal X-ray diffraction measurement of L and compounds **1**, **2**, **4** and **6** were carried out on a Bruker SMART 1000 CCD diffractometer with graphite monochromatized Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å) at 293K. Intensity data was obtained in the range $1.8 < \theta < 28^{\circ}$. An empirical absorption correction was applied using the SADABS program.¹ The data collection of compounds **3**, **5** and **7** was performed on a Rigaku AFC7R four-circle diffractometer in the variable ω -scan mode² using Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å) at 293 K. Intensity data was obtained in the range $2.3 < \theta < 25^{\circ}$, and an empirical absorption correction was applied using ψ -scan data for selected strong reflections. The data of compound **8** was collected on a Rigaku RAXIS-IIC imaging-plate diffractometer using Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å) at 293K.³ Intensity data was obtained in the range $2.2 < \theta < 25.5^{\circ}$, and a self-consistent semi-empirical absorption correction based on symmetry-equivalent reflections was applied using the REQAB program.⁴ All the structures were solved by direct methods and refined by full-matrix least squares based on F^2 using the SHELXTL program package.⁵ A summary of the crystallographic data and structure refinement is listed in Table 1.

Crystal structure of the L Ligand

Single-crystal X-ray analysis revealed that the crystal structure of L consists of a hydrogen-bonded two-dimensional framework. All the atoms in the molecule except C10

and C11 lie on a mirror plane, and hence the pyridyl rings are orthogonal to each other (Fig. 4). The L molecules are connected through week hydrogen bonds: C10…O1b, 3.294Å, C10-H10A…O1b, 172.1°; C11…O2c, 3.230Å, C11-H11A…O2c, 176.9°, (b -x+1, -y, -z+2; c -x+1, -y, -z+1) generating a corrugated sheet built of hydrogen-bonded eight-membered, ten-membered and large twenty-two-membered rings (Fig. 5).

TGA Measurements:

The X-ray single crystal studies have clearly shown that compounds 1 and 5 have different crystal asymmetry units but similar two-dimensional network. In complex 1 there is a coordination water bonded to the Co(II) ion, besides SCN and the ligands, while in complex 5, no water molecules exist in the structure. The TGA investigation for 1 indicates that the first weight loss of 4.38% from 94°C to 160°C, corresponding to the loss of the coordination water molecule (calculated: 4.27%). Then the remaining framework $[CoL(SCN)_2]_{\infty}$ does not lose weight until further heating to 228°C. For complex 5, the network of $[CoL_2(SCN)_2]_{\infty}$ begins to collapse from 250°C, close to the temperature of complex 1, because of their similar two-dimensional (4, 4) topology.

References:

- G. M. Sheldrick, SADABS: Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 1996.
- R. A. Sparks, in F. R. Ahmed (Ed.), Crystallography, Computing Techniques, Munksgaard, Copenhagen, 1976, p.452.
- 3. (a) J. Tanner, K. L. Krause, *The Rigaku Journal* **1994**, *11*, 4. *ibid*.**1990**, 7,28; (b) K.

Kraus, G.N. Phillips, Jr. Appl. Crysta. 1992, 25, 146.

- 4. L. L. Miller, R.A. Jacobson, Computer Chem. 1989, 13, 1.
- 5. G.M. Sheldrick, SHELXTL: Structure Determination Software Programs, Bruker

Analytical X-ray Systems, Inc., Madison, WI, U. S. A., 1997

Scheme 1. The coordination modes of the di-pyridine based di-N-oxide ligands with transition and rare-earth metal ions.

Di-pyridine based di-*N***-oxide ligands:**

Coordination modes:

X represent: I. none. II. -CH₂-CH₂-III. -CH=CH-IV. -CH2-CH2-CH2-

terminal monodentate (M = Mn, Co, Cu)

end-to-end bidentate, μ -O,O' (M = Co, Ni, Cu, Zn, La, Pr, Yb, Sm, Er)

 $(\mu = \mu_2)$

 μ -O,O (M = Mn, Zn)

 μ_3 -*O*,*O*,*O*' (M = Mn, Co, Zn)

 $\mu_4 - O, O, O', O' (M = La, Ce, Gd)$

Complex	L	1	2	3	4	5	6	7	8
Empirical formula	$C_{13}H_{14}N_2O_2$	$C_{15}H_{16}CoN_4O_3S_2$	$C_{15}H_{16}CdN_4O_3S_2$	$C_{15}H_{16}MnN_4O_3S_2$	$C_{15}H_{16}ZnN_4O_3S_2$	$C_{28}H_{28}CoN_6O_4S_2$	$C_{28}H_{28}CdN_6O_4S_2\\$	$C_{28}H_{32}MnN_6O_6S_2$	$C_{28}H_{32}ZnN_6O_6S_2\\$
Formula weight	230.26	423.37	476.84	419.38	429.81	635.61	689.08	667.66	678.08
Crystal size	0.95×0.42×0.39	0.68×0.24×0.20	0.32×0.31×0.31	0.60×0.40×0.20	0.40×0.40×0.20	0.50×0.40×0.40	0.58×0.24×0.22	0.50×0.40×0.30	0.50×0.40×0.30
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	<i>Pnma</i> (No.62)	P2(1)/c (No.14)	P2(1)/c (No.14)	P2(1)/c (No.14)					
a (Å)	9.159(2)	12.510(7)	15.375(2)	12.544(3)	12.555(3)	6.925(1)	7.115(1)	12.773(3)	12.564(3)
<i>b</i> (Å)	7.799(1)	12.446(7)	14.926(2)	12.644(3)	12.529(3)	22.460(5)	22.521(4)	14.033(3)	14.136(3)
<i>c</i> (Å)	16.794(3)	13.185(8)	8.16969(8)	13.219(3)	13.159(3)	9.688(2)	9.708(2)	8.734(2)	8.779(2)
a (°)	90	90	90	90	90	90	90	90	90
b (°)	90	114.40(1)	91.079(2)	114.18(3)	114.779(5)	98.24(3)	99.210(3)	94.66(3)	94.28(3)
g (°)	90	90	90	90	90	90	90	90	90
$V(\text{\AA}^3)$	1199.5(4)	1870(2)	1874.5(3)	1912.5(7)	1879.4(7)	1491.1(5)	1535.5(5)	1560.4(5)	1554.8(5)
Z	4	4	4	4	4	2	2	2	2
$D_{\rm calc}$ (g/cm ³)	1.275	1.504	1.690	1.456	1.519	1.416	1.490	1.421	1.448
m (Mo-Kα) (mm ⁻¹)	0.088	1.162	1.409	0.929	1.550	0.759	0.890	0.607	0.975
<i>F</i> (000)	488	868	952	860	880	658	700	694	704
Reflections collected	7739	12512	12357	3523	12649	2860	10405	2958	4834
Independent reflections (R _{int})	1548(0.0260)	4556(0.0496)	4514(0.0289)	3361(0.0416)	4535(0.0663)	2633 (0.0271)	3723(0.0375)	2760(0.0355)	2761(0.0294)
Observed reflections $[I > 2\sigma(I)]$	1134	3202	3785	2204	2338	1873	2944	2138	2637
Parameters	98	226	235	234	226	188	187	197	197
Goodness-of-fit	1.041	0.969	1.011	1.027	0.913	1.034	1.071	1.057	1.070
$R_1 \left[I > 2\sigma(I) \right]^a$	0.0440	0.0403	0.0326	0.0446	0.0465	0.0471	0.0423	0.0374	0.0347
wR_2 (all data) ^b	0.1434	0.1086	0.0877	0.1260	0.1190	0.1332	0.1303	0.1047	0.0947

Table 1. Crystallographic data of L and complexes 1-8.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}| \qquad {}^{b}wR_{2} = [\Sigma [w (F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w (F_{o}{}^{2})^{2}]^{1/2}$

Fig. 4 (a) Molecular structure of L viewed in the *a* direction; atoms C10a and C11a are generated by the symmetry operator *x*, 0.5-*y*, *z*. (b) Molecular structure of L view along the *b* axis.

(**a**)

(**b**)

Fig. 5 (a) Two-dimensional network of L showing hydrogen-bonded rings; the structure is viewed in the *a* direction. (b) Packing of corrugated sheets of L viewed along the *b* axis. Hydrogen atoms that are not involved in hydrogen bonding are omitted for clarity.

(**a**)

Fig. 6 (a) The dinuclear subunit of complex 1, showing the coordination environment of Co(II) ions (Symmetry operation: A -*x*+1, *y*+1/2, -*z*+3/2; B -*x*, -*y*+2, -*z*+1). (b) The mononuclear subunit of complex 5, showing the coordination environment of Co(II) ions (Symmetry operation: A -*x*, -*y*+1, -*z*+1; B -*x*, *y*+1/2, -*z*+1/2; C *x*, -*y*+1/2, *z*+1/2).

(a)

Fig. 7 (a) Two-dimensional coordination network with 56-membered S-shaped rings and dinuclear nodes in complex 1 viewed along the *c* axis. (Symmetry operation: A -*x*, -*y*+2, -*z*+1; B -*x*+1, *y*+1/2, -*z*+3/2; C *x*+1, -*y*+3/2, *z*+1/2; D -*x*+2, -*y*+2, -*z*+2). (b) Analogous (4, 4) net with 56-membered rings and mononuclear nodes in complex 5 viewed along the *a* axis (Symmetry operation: A *x*, -*y*+1/2, *z*+1/2; B -*x*, *y*-1/2, -*z*+1/2; C -*x*, -*y*, -*z*+1). Hydrogen atoms, *N*-bonded thiocyantate ligands and water molecules are omitted for clarity.

Fig. 8 An infinite chain in compex 2 with dinuclear centers bridged by μ -N,S thiocyanate ligands

(Symmetry operation: A -x, -y+1, -z; x, y, z-1).

Fig. 9. The coordination environment of metal ions in complex 7 and 8 (M = Mn(7), Zn(8)).