Preparation of reactive surfaces by electrografting.

C. Jérôme ${ }^{\text {a }}$, S. Gabriel ${ }^{\text {a }}$, S. Voccia ${ }^{\text {a }}$, C. Detrembleur ${ }^{\text {a }}$, M. Ignatova ${ }^{\text {a }}$, R. Gouttebaron ${ }^{\text {b }}$, R. Jérôme ${ }^{\text {a }}$

Electronic supplementary information

Figure 1: Coating of the conducting substrates by PNSA
a) XPS spectra of the electrografted PNSA: (A) nitrogen (B) oxygen (C) carbon
b) AFM micrograph (tapping mode) of Cu electrode modified by PNSA.

Table: Quantification of the reconstructed XPS spectrum for the carbon area (spectrum C)
Figure 2: Electroactivity of PNSA-FcNH , in ACN containing TEAP (0.05 M) film grafted on a Pt-QCM electrode (A) Cyclic voltammogram at $100 \mathrm{mV} / \mathrm{s}$; (B) simultaneous change in frequency; (C) change in frequency for neat Pt
Figure 3 : Binding of biotin onto PNSA
a) PNSA grafted on ITO-glass after spraying with DMACA; (I) non-grafted area (II) modified area with PNSA-biotin
b) UV-Vis spectrum of (A) ITO-glass modified with PNSA-biotin; (B) after spraying with DMACA

Figure 4 : Binding of the glucose-oxidase (Gox) onto PNSA:
a) PNSA grafted on ITO-glass after Bradford test: (I) PNSA-Gox grafted area (II) non-grafted area
b) $\Delta \mathrm{I}$ measured at $\mathrm{E}=0.6 \mathrm{~V}$ from voltammograms recorded at $5 \mathrm{mV} / \mathrm{s}$ for C-PNSA-Gox dipped in a ferrocene carboxylic acid containing $\left(10^{-3} \mathrm{M}\right)$ phosphate buffer upon addition of glucose.
Figure 5. Infrared reflection-absorption spectrum of poly(ethyleneimine) grafted onto the poly(N-succinimidyl acrylate) modified Inox 316 L with the characteristic bands at $3234 \mathrm{~cm}^{-1}$ for NH -stretching, $1651 \mathrm{~cm}^{-1}$ for amide I; and $1547 \mathrm{~cm}^{-1}$ for amide II proving the grafting efficiency.
a)

Binding energy	Expected number of atoms	Experimental number of atoms	Atomic $\%$
$285 \mathrm{eV}:{ }^{1} \mathrm{C}$	1	5.1	20.3
$285.6 \mathrm{eV}:{ }^{2} \mathrm{C}$	1	4.7	18.7
$286.3 \mathrm{eV}:{ }^{3} \mathrm{C}$	2	2.1	8.4
$288.7 \mathrm{eV}:{ }^{4} \mathrm{C}$	2	2	8
$289.6 \mathrm{eV}:{ }^{5} \mathrm{C}$	1	1	4
$287 \mathrm{eV}: ?$	-	1.1	4.4

b)

$\begin{array}{cc}\frac{X}{2} & 100.000 \mathrm{~mm} / \mathrm{div} \\ & 15.000 \\ \mathrm{~nm} / \mathrm{div}\end{array}$
Figure 1

Figure 2

b)

Figure 3
a)

b)

Figure 4

Figure 5

