Preparation of reactive surfaces by electrografting.

C. Jérôme^a*, S. Gabriel^a, S. Voccia^a, C. Detrembleur^a, M. Ignatova^a, R. Gouttebaron^b, R. Jérôme^a

Electronic supplementary information

Figure 1: Coating of the conducting substrates by PNSA

a) XPS spectra of the electrografted PNSA: (A) nitrogen (B) oxygen (C) carbon

b) AFM micrograph (tapping mode) of Cu electrode modified by PNSA.

Table: Quantification of the reconstructed XPS spectrum for the carbon area (spectrum C)

Figure 2: Electroactivity of PNSA-FcNH₂, in ACN containing TEAP (0.05M) film grafted on

a Pt-QCM electrode (A) Cyclic voltammogram at 100 mV/s; (B) simultaneous change in frequency; (C) change in frequency for neat Pt

Figure 3 : Binding of biotin onto PNSA

a) PNSA grafted on ITO-glass after spraying with DMACA; (I) non-grafted area (II) modified area with PNSA-biotin

b) UV-Vis spectrum of (A) ITO-glass modified with PNSA-biotin; (B) after spraying with DMACA

Figure 4 : Binding of the glucose-oxidase (Gox) onto PNSA:

a) PNSA grafted on ITO-glass after Bradford test: (I) PNSA-Gox grafted area (II) non-grafted area

b) ΔI measured at E=0.6V from voltammograms recorded at 5mV/s for C-PNSA-Gox dipped in a ferrocene carboxylic acid containing (10⁻³M) phosphate buffer upon addition of glucose.

Figure 5. Infrared reflection-absorption spectrum of poly(ethyleneimine) grafted onto the poly(N-succinimidyl acrylate) modified Inox 316L with the characteristic bands at 3234 cm⁻¹ for NH-stretching, 1651 cm⁻¹ for amide I; and 1547 cm⁻¹ for amide II proving the grafting efficiency.

404.5 404 403.5 403 402.5 402 401.5 401 400.5 400 399.5 399 Binding Energy (eV)

Key A B Backgro Envelop N1s

398.5

Binding	Expected	Experimental	Atomic
energy	number of	number of	%
	atoms	atoms	
285eV: ¹ C	1	5.1	20.3
285.6eV: ² C	1	4.7	18.7
286.3eV: ³ C	2	2.1	8.4
288.7eV: ⁴ C	2	2	8
289.6eV: ⁵ C	1	1	4
287eV: ?	-	1.1	4.4

b)

Figure 1

Figure 5