Two prolines with a difference: Contrasting stereoelectronic effects of *4R/S*-aminoproline on triplex stability in collagen peptides [Pro(X)-Pro(Y)-Gly]_n

M.Umashankara, I. Ramesh Babu and Krishna N. Ganesh *

Division of Organic Chemistry (Synthesis),

National Chemical Laboratory,

Pune 411008, India

Fax: (91) 20 589 3153

E-mail: kng@ems.ncl.res.in

Expanded 500 MHz ¹H-NMR spectrum of Ac-Amp-OMe⁺ **3** in D₂O; *ma* is the major isomer (*Z*) and *mi* is the minor isomer (*E*). Spectrum was recorded on a Bruker-DRX 500 instrument using a 5 mm QNP probe.

Expanded 500 MHz ¹H-NMR spectrum of Ac-amp-OMe⁺ **4** in D₂O; *ma* is the major isomer (*Z*) and *mi* is the minor isomer (*E*). Spectrum was recorded on a Bruker-DRX 500 instrument using a 5 mm QNP probe.

Expanded 500 MHz ¹H-NMR spectrum of Ac-Hyp-OMe in D_2O . *ma* is the major isomer (*Z*) and *mi* is the minor isomer (*E*). Spectrum was recorded on a Bruker-DRX 500 instrument using a 5 mm QNP probe.

H^{α} regions of the ¹H-NMR spectra

 H^{α} regions of the ¹H-NMR spectra of **A** Ac-Hyp-OMe; **B** Ac-Amp-OMe⁺ **3**; and **C** Ac-amp-OMe⁺ **4**; *ma* is the major isomer (*Z*) and *mi* is the minor isomer (*E*). NMR spectra were recorded in D₂O at 500 MHz with a 5mm probe.

Analysis of vicinal coupling constants for ring pucker assignments

Vicinal coupling constants of compounds **3**,**4** extracted from 500 MHz spectra and the derived pucker type for the pyrrolidine ring

	J _{H-H}								
-		Э <i>Ј</i> н₋н	_ pucker						
-	J ₁₋₂	J ₁₋₃	J ₂₋₄	J ₃₋₄	J_{4-5}	J ₄₋₆	J ₂₋₆	J ₃₋₅	type
J_{calc} for γ -exo	8.10	10.36	0.93	3.82	3.26	0.62			
pucker ^a									
J_{cal} for γ -endo	10.50	2.80	3.85	1.10	0.81	3.42			
pucker ^a									
Ac-Hyp-OMe	7.95	8.74	2.38	4.37	3.97	1.59	1.99		γ- exo
Ac-Amp-OMe ⁺ 3	6.71	8.24			5.95	3.82			γ- exo
Ac-amp-OMe ⁺ 4	8.95	5.85	6.51	5.58	3.26	6.51			γ- endo

a) Idealized coupling constants for γ -exo and γ -endo conformation (from reference 8b)

b) Obtained from decoupled spectra (see Appendix).

X = 4*R*-OH, 4*R*-N₃, 4S-N₃, 4*R*-NH₃⁺, 4S-NH₃⁺

Numbering scheme used to identify the peaks of ¹H-NMR spectra of 4-substituted proline model compounds Ac-Xaa-OMe.

a) MeOH, SOCl₂; b. Ac₂O; c) MeOH, K₂CO₃; d) PPh₃, DEAD, TsOMe, THF; e) TsCl, pyridine; f) NaN₃, DMF at 55 °C; g) Pd-C, H₂, MeOH

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2003

R_{pn} values for the collagen peptides calculated from the CD spectra measured at 10 °C

	R _{pn} values						
	рН	pH 7.0	рН 9.0	pH 12.0			
	3.0						
Ac-Phe.(Pro.Amp.Gly) ₆ -NH ₂ 9	0.17	0.15	0.09	0.17			
Ac-Phe(amp.Pro.Gly) ₆ -NH ₂ 7	0.12	0.08	0.08	-			
Ac-Phe(Amp.Pro.Gly) ₆ -NH ₂ 8	0.08	0.08	-	-			