Electronic Supplementary Information (ESI)

Cryptand 2a

Step 1

Method 1: Melt

Benzaldehyde (3g, 28mmol) was heated in an oil bath with stirring. 2, ' (ethylenedioxy)bis(ethylamine) $(2.1 \mathrm{~g}, 14.2 \mathrm{mmol})$ was added drop-wise, and the mixture cooled to room temperature after emission of $\mathrm{H}_{2} \mathrm{O}$ vapour had ceased. The resulting imine was suspended in 30 mL of MeOH , and $\mathrm{NaBH}_{4}(6.48 \mathrm{~g}, 0.171 \mathrm{~mol})$ was added portion-wise under $\mathrm{N}_{2(\mathrm{~g})}$, before stirring for two and a half hours. The mixture was evaporated to dryness, and dissolved in $\mathrm{H}_{2} \mathrm{O}$. The product was extracted into CHCl_{3}, and dried over MgSO_{4}. Filtration followed by solvent removal and drying in vacuo yielded a brown oil (3.72g, 80% yield).

Method 2: Dean-Stark

The benzaldehyde and 2,2'-(ethylenedioxy)bis(ethylamine) were dissolved in 120 mL toluene and refluxed for 4 hours using Dean-Stark apparatus to remove $\mathrm{H}_{2} \mathrm{O}$, encouraging imine formation. The mixture was cooled and the toluene removed under vacuum. The resulting imine was then suspended in 30 mL MeOH , and reduced to the amine $(3.72 \mathrm{~g}$, 80% yield), as above.
$\delta{ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{M H z}, \mathbf{2 8 8 K}\right): 1.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{NH}\right.$, exchange broadened), $2.78\left(4 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}=5.3 \mathrm{~Hz}, \mathrm{ArCH}_{2} \mathrm{NHCH}_{2}\right), 3.57(8 \mathrm{H}, \mathrm{m}$ [two indistinguishable triplets of similar chemical shift], $\left.\mathrm{ArCH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2}-\right), 3.77\left(4 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 7.30(10 \mathrm{H}, \mathrm{m}$, ArH)

ESMS m/z: $329.2\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$

Step 2

0.5 g (1.5 mmol) of \mathbf{I} was dissolved in 30 mL of acetonitrile or $\mathrm{THF} . \mathrm{Et}_{3} \mathrm{~N}(0.31 \mathrm{~g}, 3.1 \mathrm{mmol})$ and $\mathrm{CS}_{2}(0.23 \mathrm{~g}, 3.1 \mathrm{mmol})$ were added and stirred for 2 hours before increasing the solvent volume to $500 \mathrm{~mL} . \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.24 \mathrm{~g}, 1.02 \mathrm{mmol})$ was added and the mixture stirred for 15 hours under $\mathrm{N}_{2(\mathrm{~g})}$. The solution ws then evaporated to dryness, before being redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. It was washed four times with water, and then dried over MgSO_{4}. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under reduced pressure. The resulting green powder was dried overnight in vacuo, before being recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{2} \mathrm{O}$ ($0.1 \mathrm{~g}, 13 \%$ yield).
$\delta^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{M H z}, \mathbf{2 8 8 K}\right)$: broad signals. $3.29(12 \mathrm{H}$, one broad signal rather than the expected triplet, $\left.-\mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 3.58(24 \mathrm{H}, \mathrm{m}$ [two indistinguishable triplets of similar chemical shift], $-\mathrm{CH}_{2} \mathrm{OCH}_{2}$ - $)$, $4.13(12 \mathrm{H}, \mathrm{s}, \mathrm{ArCH} 2), 7.30(30 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ d ${ }^{13} \mathbf{C}$ NMR (CDCl_{3}, $\left.75.5 \mathrm{MHz}, \mathbf{2 8 8 K}\right): 47.0\left(\mathrm{CH}_{2}\right)$, $52.6\left(\mathrm{CH}_{2}\right)$, $68.6\left(\mathrm{CH}_{2}\right), 70.4\left(\mathbf{C H}_{2}\right)$,
$128.9\left(\mathrm{~A} \rho \mathbf{C}^{2 / 3 / 4}\right), 135.3\left(\mathrm{ArC}^{1}\right), 208.6\left(\mathbf{C S}_{2}\right)$
ESMS m/z: $1552.1[\mathrm{M}]^{+}, 1575.1\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}, 1591.2\left[\mathrm{M}+\mathrm{K}^{+}\right]^{+}$
$\begin{array}{lllllllll}\text { Elemental analysis \%: } & & \text { Calculated } & \text { C } & 51.0 & \text { H } & 5.1 & \text { N } & 5.4\end{array}$
$\begin{array}{llllll}\text { Experimental C } & 50.8 & \text { H } & 5.3 & \text { N } & 5.9\end{array}$

Cryptand 5b

Step 1-2-Chloro- N-[2-(2-chloro-acetylamino)-phenyl]-acetamide

1,2-phenyldiamine $(2.16 \mathrm{~g}, 20.0 \mathrm{mmol})$ was dissolved in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$ and to this was added $\mathrm{KOH}(2.36 \mathrm{~g}, 40.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. Chloroacetyl chloride ($4.52 \mathrm{~g}, 40.0 \mathrm{mmol}$) was dissolved in CHCl_{3} (50 mL) and added drop wise to the mixture with stirring. After 15 minutes the solid was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}$ (20mL). Drying in vacuo yielded a pink solid.

Yield $=5.12 \mathrm{~g}(98.1 \%)$
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left._{6}\right) \cdot: 8.67(\mathrm{br}, 2 \mathrm{H}, \mathrm{N} H), 7.52\left(\mathrm{~d}\right.$ of d, ${ }^{3} \mathbf{J}=6 \mathrm{~Hz},{ }^{4} \mathbf{J}=3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}), 7.32\left(\mathrm{~d}\right.$ of d, $\left.{ }^{3} \mathrm{~J}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right), 4.24\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right)$

ESMS m/z: $283.1\left[\mathrm{M}+\mathrm{Na}^{+}\right]^{+}$

Step 2-2-Hexylamino- N -[2-(2-chloro-acetylamino)-phenyl]-acetamide

Hexylamine (20 mL , excess) was heated to $40^{\circ} \mathrm{C}$ and 2-chloro- N-[2-(2-chloro-acetylamino)-phenyl]-acetamide $(4.24 \mathrm{~g}, 16.6 \mathrm{mmol})$ was added portion wise with stirring. The mixture was stirred for 12 hours. $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added and the product extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times 50 \mathrm{~mL})$ and then washed again with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Filtration followed by solvent removal and heating at $40^{\circ} \mathrm{C}$ in vacuo yielded a yellow oil.

Yield $=2.83 \mathrm{~g}(63.0 \%)$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \cdot: 9.42\left(\mathrm{t},{ }^{3} \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CONH}\right), 7.60\left(\mathrm{~d}\right.$ of $\mathrm{d},{ }^{3} \mathrm{~J}=6 \mathrm{~Hz},{ }^{4} \mathbf{J}=$ $4 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 7.17\left(\mathrm{~d}\right.$ of $\left.\mathrm{d},{ }^{3} \mathrm{~J}=6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=4 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} H\right), 3.39\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{COCH}_{2}\right), 2.64(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}=8 \mathrm{~Hz}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 1.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2}\right), 1.29\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.87$
$\left(\mathrm{t},{ }^{3} \mathrm{~J}=7 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$
ESMS m/z: $391.4\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}$

Step 3 - Cryptand 5b

2-hexylamino- N -[2-(2-chloro-acetylamino)-phenyl]-acetamide ($0.94 \mathrm{~g}, 2.4 \mathrm{mmol}$) was dissolved in THF: $\mathrm{H}_{2} \mathrm{O}(2: 1 \mathrm{v} / \mathrm{v}, 30 \mathrm{~mL})$ and $\mathrm{KOH}(0.27 \mathrm{~g}, 4.8 \mathrm{mmol})$ was added and stirred under $\mathrm{N}_{2(\mathrm{~g})}$ until dissolved. $\mathrm{CS}_{2}(0.37 \mathrm{~g}, 4.8 \mathrm{mmol})$ was then added and the solution stirred for 30 minutes. $\mathrm{FeCl}_{3}(0.29 \mathrm{~g}, 1.6 \mathrm{mmol})$ was added to the yellow solution and the mixture stirred for 15 hours. $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added with stirring, filtration followed by recrystallisation from $\mathrm{DMSO}_{2} / \mathrm{Et}_{2} \mathrm{O}$ followed by filtering and washing with EtOH (20mL) and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ yielded a black powder which was dried in vacuo.

Yield $=0.91 \mathrm{~g}(65.6 \%)$

UV/visible (DMSO) •/nm ($\left.\cdot / 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 354$ sh (10.4), $389 \mathrm{sh}(15.0), 503 \mathrm{sh}(4.3), 602$ sh (2.3)

IR (Nujol ${ }^{\circledR}$) •/ $\mathrm{cm}^{-1}: 3214(\mathrm{NH}), 1676$ (Amide I), 1518 (Amide II), $1482(\mathrm{CN}), 960\left(\mathrm{CS}_{\text {as }}\right)$, $644\left(\mathrm{CS}_{\mathrm{s}}\right)$

ESMS m/z: $1733.7\left[\mathrm{M}+\mathrm{H}^{+}\right]^{+}, 866.7[\mathrm{M}]^{2+}$
$\begin{array}{lllllllll}\text { Elemental Analysis \%: } & \text { Calculate } & \text { C } & 49.9 & \text { H } & 6.3 & \text { N } & 9.7\end{array}$
$\begin{array}{lllllll}\text { Experimental C } & 49.9 & \mathrm{H} & 6.0 & \mathrm{~N} & 9.8\end{array}$

