Supporting Information

Synthesis of Novel Axially Chiral Rh-NHC Complexes Derived from BINAM and Application in the Enantioselective Hydrosilylation of Methyl Ketones**

Wei-Liang Duan, ${ }^{\mathrm{b}}$ Min Shi, ${ }^{\mathrm{a} *}$ Guo-Bin Rong ${ }^{\mathrm{b}}$
${ }^{a}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 China, mshi@pub.sioc.ac.cn Fax: 86-21-64166128
${ }^{b}$ School of Chemistry \& Pharmaceutics East China University of Science and Technology 130 MeiLong Road, Shanghai 200237 China

General Remarks. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AM-300 spectrometer for solution in CDCl_{3} with tetramethylsilane (TMS) as an internal standard; J-values are in Hz . Mass spectra were recorded with a HP-5989 instrument. Optical rotations were determined at 589 nm (sodium D line) by using a Perkin-Elmer-241 MC digital polarimeter; $[\alpha]_{\mathrm{D}}$-values are given in unit of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. THF and toluene were distilled from Na under Ar atmosphere. All of the solid compounds reported in this paper gave satisfactory CHN microanalyses with a Carlo-Erba 1106 analyzer. $[\mathrm{RhCl}(\mathrm{COD})]_{2}$ was prepared according to the literature. ${ }^{1}$ Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with Huanghai GF_{254} silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure. Enantiomeric ratios were determined by chiral GC or HPLC analysis. The absolute configuration was assigned by comparison the optical rotation with those reported date. Racemic products were synthesized from the reduction of corresponding ketones in THF with LiAlH_{4} or NaBH_{4}.

[^0]
Synthesis of (S)-(+)- N^{2}, N^{2}-bis(2-nitrophenyl)-1,1'-binaphthalenyl-2,2'-diamine 2.

Under argon atmosphere, a mixture of (S)-1,1'-binaphthalenyl-2, 2'-diamine $\mathbf{1}$ ($142 \mathrm{mg}, 0.50$ mmol), 2-bromo-nitrobenzene ($303 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(12 \mathrm{mg}, 0.0125 \mathrm{mmol})$, DPE-phos ($20 \mathrm{mg}, 0.0375 \mathrm{mmol}$), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(520 \mathrm{mg}, 1.6 \mathrm{mmol})$ were stirred in anhydrous toluene (4.0 $\mathrm{mL})$ at $80^{\circ} \mathrm{C}$ for 48 h . After the reaction mixture was cooled to room temperature, the reaction was quenched by addition of $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. The organic compound was extracted with EtOAc (2 x 20 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: hexane/ethyl acetate $=20 / 1$) to remove excess raw material, and then with eluent: hexane/ethyl acetate $=4 / 1$ to give 2 as a red solid; Yield: $263 \mathrm{mg}(100 \%) .[\alpha]^{20}{ }_{\mathrm{D}}=522.4\left(\mathrm{c} 0.33, \mathrm{CHCl}_{3}\right.$); IR (KBr) v 3317, 1613, 1498, 1244, $736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 6.58-6.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}$), 7.10-7.30 (m, 6H, ArH), 7.31-7.37 (m, 2H, ArH), 7.46-7.51 (m, 2H, ArH), 7.68 (d, J=8.7 Hz, 2H, ArH), 7.92-7.98 (m, 4H, ArH), 8.02 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 9.04(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 115.65,117.74,122.09,124.82,125.64,125.74,126.16,127.48,128.44$, 129.71, 131.31, 133.30, 133.43, 135.16, 135.37, 141.49; MS (CI) m/e 527 ($\mathrm{M}^{+}+1,100$), 480 ($\left.\mathrm{M}^{+}-46,9.14\right), 389\left(\mathrm{M}^{+}-137,8.64\right), 341\left(\mathrm{M}^{+}-185,20.95\right)$; Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires: C 72.99, H 4.21, N 10.64. Found: C 72.89, H 4.07, N 10.49\%.

Synthesis of (\boldsymbol{S})-(-)- $\boldsymbol{N}^{2}, N^{2}$ '-bis(2-aminophenyl)-1,1'-binaphthalenyl-2,2'-diamine 3.
A mixture of $2(144 \mathrm{mg}, 0.25 \mathrm{mmol}), 10 \% \mathrm{Pd}-\mathrm{C}(15 \mathrm{mg})$ in mixed solution of EtOAc $(15 \mathrm{~mL})$ and $\mathrm{EtOH}(45 \mathrm{~mL})$ were stirred under H_{2} atmosphere (1.0 atm) at $60{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, $\mathrm{Pd}-\mathrm{C}$ was removed by filtration. The solvent was evaporated under reduced pressure. The residue was purified by a silica gel flash column chromatography (eluent: hexane/ethyl acetate, $2 / 1-1 / 1$) to give 3 as a white solid; Yield: $107 \mathrm{mg}(92 \%) .[\alpha]^{20}{ }_{\mathrm{D}}=-199.0$ (c $0.52, \mathrm{CHCl}_{3}$); IR (KBr) v 3368, 1618, 1593, 1500, 1299, 817, $745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 3.69\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{NH}_{2}\right), 5.15(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}), 6.67-6.74(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 6.98-7.05(\mathrm{~m}, 4 \mathrm{H}$, ArH), 7.15 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.24-7.29 (m, 6H, ArH), 7.80-7.83 (m, 4H, ArH), ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 113.33,115.78,116.17,118.77,122.81,123.68,126.62,126.85,127.04$, 127.45, 128.37, 128.70, 129.69, 133.76, 142.66, 143.06; MS (EI) m/e $466\left(\mathrm{M}^{+}, 100\right), 359\left(\mathrm{M}^{+}-107\right.$, 34.75), $266\left(\mathrm{M}^{+}-200,36.18\right)$; Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4}$ requires: C 82.38, H 5.62, N 12.01 . Found: C 81.98, H 5.65, N 11.97\%.

Synthesis of (S)-(-)-1,1'-(1,1'-binaphthanelyl)dibenzimidazole 4.

The compound 3 ($233 \mathrm{mg}, 0.50 \mathrm{mmol}$) and triethyl orthoformate $\left[\mathrm{HC}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}\right](5.0 \mathrm{~mL})$
containing a little TsOH were heated at $100{ }^{\circ} \mathrm{C}$ for 24 h . After the excess amount of triethyl orthoformate was removed under reduced pressure, the residue was purified by a silica gel flash column chromatography (eluent: hexane/ethyl acetate, $2 / 3$) to give $\mathbf{4}$ as a white solid; Yield: 221 $\mathrm{mg}(91 \%) .[\alpha]^{20}{ }_{\mathrm{D}}=-490.10\left(\mathrm{c} 0.52, \mathrm{CHCl}_{3}\right)$; IR (KBr) v 3057, 1612, 1490, 1232, 820, $734 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 6.10(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 6.40-6.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 6.93-6.99 (m, 2H, ArH), 6.99 (s, 2H, NCHN), 7.44 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.48-7.57 (m, 6H, ArH), 7.64-7.69 (m, 2H, ArH), 8.07 (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) δ 108.67, 119.06, 122.06, 123.40, 123.63, 126.16, 126.96, 128.01, 128.18, 128.77, 130.69, 132.19, $132.38,133.78,134.38,141.42,142.13$; MS (EI) $m / e 486\left(\mathrm{M}^{+}, 100\right), 368\left(\mathrm{M}^{+}-118,78.13\right), 243$ $\left(\mathrm{M}^{+}-143,20.75\right)$; Anal. Calcd. for $\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{~N}_{4}$ requires: C 83.93, H 4.56, N 11.51. Found: C 83.97, H 4.55, N 11.45%.

Synthesis of (\boldsymbol{S})-1,1'-(1,1'-binaphthyl)-3,3'-dimethyldibenzimidazolium diiodide 5.

The compound $4(97 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{I}(0.24 \mathrm{~mL}, 4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL})$ were stirred under reflux for 5 h . After cooling to room temperature, volatiles were removed under reduced pressure and the obtained solid compound 5 was used for the next reaction without further purification. MS (ESI) $m / e 643.2\left(\mathrm{M}^{+}-\mathrm{I}\right), 258.1\left(\mathrm{M}-2 \mathrm{I}^{-}\right) / 2$.

Synthesis of $\mathbf{R h}(\mathrm{I})$ complex 6 and $\mathbf{R h}(\mathrm{III})$ complex 7.

A mixture of $5(154 \mathrm{mg}, 0.20 \mathrm{mmol}),[\mathrm{RhCl}(\mathrm{COD})]_{2}(48 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{NaOAc}(132 \mathrm{mg}, 0.80$ $\mathrm{mmol})$, and $\mathrm{KI}(66 \mathrm{mg}, 0.40 \mathrm{mmol})$ was stirred in $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{ml})$ under reflux for 24 h . After cooling, volatiles were removed under reduce pressure and the residue was purified by a silica gel flash column chromatography (eluent: hexane/ethyl acetate $=8 / 1$) to give a $[\operatorname{RhX}(C O D)]_{2}$ fraction ($\mathrm{X}=\mathrm{Cl}, \mathrm{I}$). The subsequent elution with hexane/ethyl acetate (6/1) gave a yellow solid $\mathrm{Rh}(\mathrm{I})$ complex 6. The further elution with hexane/ ethyl acetate (1/1) gave a orange solid Rh (III) complex 7.
(\boldsymbol{S})-(-)-Diiodo-[1,1'-($\mathbf{1 , ~}^{\prime} \mathbf{1}^{\prime}$-binaphthyl)-3,3'-dimethyldibenzimidazoline-2,2'-diylidene]bis-(η^{4} -1,5-cyclooctadiene)dirhodium(I) 6. A crystal suitable for X-ray analysis was obtained by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} .[\alpha]^{20}{ }_{\mathrm{D}}=-14.1\left(\mathrm{c} 1.22, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr}) \vee 2847,1601,1483,1333$, $1218,799,738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 1.43-1.55\left(\mathrm{~m}, 4 \mathrm{H}, \operatorname{cod}-\mathrm{CH}_{2}\right.$), 1.69-1.73 $\left(\mathrm{m}, 4 \mathrm{H}, \operatorname{cod}-\mathrm{CH}_{2}\right), 1.83-1.87\left(\mathrm{~m}, 2 \mathrm{H}, \operatorname{cod}-\mathrm{CH}_{2}\right), 2.02-2.18\left(\mathrm{~m}, 6 \mathrm{H}, \operatorname{cod}-\mathrm{CH}_{2}\right), 3.09-3.11(\mathrm{~m}, 2 \mathrm{H}$, cod-CH), 3.39-4.44 (m, 2H, cod-CH), 4.02-4.09 (m, 2H, cod-CH), 4.17 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}$), 5.16-5.20 ($\mathrm{m}, 2 \mathrm{H}, \operatorname{cod}-\mathrm{CH}$), 6.59-6.65 (m, 4H, ArH), 6.76-6.81 (m, 2H, ArH), 6.88 (d, J=9.0 Hz, 2H, ArH), 7.41-7.52 (m, 4H, ArH), 7.60-7.67 (m, 4H, ArH), 7.97 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 8.03 (d, $J=7.8$
$\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}$) ${ }^{13}{ }^{3} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 28.86,29.63,31.62,32.70,36.50,70.37(\mathrm{~d}$, ${ }^{1} J\left({ }^{103} \mathrm{Rh}, \mathrm{C}\right)=13.4 \mathrm{~Hz}$, cod-CH$), 71.88\left(\mathrm{~d},{ }^{1} J\left({ }^{103} \mathrm{Rh}, \mathrm{C}\right)=14.8 \mathrm{~Hz}, \operatorname{cod}-\mathrm{CH}\right), 96.14\left(\mathrm{~d},{ }^{1} J\left({ }^{103} \mathrm{Rh}, \mathrm{C}\right)\right.$ $=6.1 \mathrm{~Hz}, \operatorname{cod}-\mathrm{CH}), 98.33\left(\mathrm{~d},{ }^{1} J\left({ }^{103} \mathrm{Rh}, \mathrm{C}\right)=7.1 \mathrm{~Hz}\right.$, cod-CH$), 107.90,111.89,121.16,122.67$, 126.39, 126.82, 127.29, 128.66, 129.11, 130.73, 131.64, 133.85, 134.12, 136.11, 137.01, 138.02, $196.35\left(\mathrm{~d},{ }^{1} J\left({ }^{103} \mathrm{Rh}, \mathrm{C}\right)=49.1 \mathrm{~Hz}, \mathrm{CN}_{2}\right)$; MS (ESI) m/e 1063.1 (M^{+}-I); Anal. Calcd. for $\mathrm{C}_{52} \mathrm{H}_{50} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{Rh}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires: C $51.68, \mathrm{H} 4.34, \mathrm{~N} 4.64$. Found: C $51.84, \mathrm{H} 4.62, \mathrm{~N} 4.54 \%$.

Figure 1: The ORTEP draw of $\mathrm{Rh}(\mathrm{I})-\mathrm{NHC}$ complex 6.
Selected bond lengths and angles: Rh-C(carbene) 2.059(12) and 1.924(19) \AA, I1-Rh1-C11 (carbene) 90.1(4) ${ }^{\circ}$.

The crystal data for $\mathrm{Rh}(\mathrm{I})-\mathrm{NHC}$ complex 6: empirical formula: $\mathrm{C}_{52} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{I}_{2} \mathrm{Rh}_{2}$, formula weight: 1190.58, temperature: 293(2) K, crystal system, space group: Orthorhombic, P2(1)2(1)2(1), unit cell dimensions: $a=12.1794(19) \AA, b=19.027(3) \AA, c=20.291(3) \AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}, V=$ $4702.0(13) \AA^{3}, Z_{\text {value }}=4, D_{\text {calc }}=1.682 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=2344$, Crystal size: $0.432 \times 0.201 \times 0.126 \mathrm{~mm}$, Data/restraints/parameters $=8726 / 0 / 544$, Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]: \mathrm{R} 1=0.0651$, wR $2=0.1366, \mathrm{R}$ indices (all data): R1=0.1070; wR2=0.1508. Its crystal structure has been deposited at the Cambridge Crystallographic Data Center and has been allocated the deposition numbers: CCDC 209244.

(S)-(+)-Diiodo-[1,1'-(1,1'-binaphthyl)-3,3'-dimethyldibenzimidazoline-2,2'-diylidene]

acetato $\mathbf{R h}$ (III) 7. Yield: $47 \mathrm{mg}(25 \%)$. A crystal suitable for X-ray analysis was obtained by recrystallization from hexane/THF (1/1). $[\alpha]^{20}{ }_{\mathrm{D}}=8\left(\mathrm{c} 1.03, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}) \vee 3057,1591,1464$,

1333, 1088, 739, $689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 4.28\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.70(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.90-7.12 (m, 10H, ArH), 7.28-7.33 (m, 2H, ArH), $7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), $7.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 24.94,38.04,109.70,111.32,122.82,123.32,126.16,126.62,127.08,127.71,127.98$, 129.36, 130.93, 132.81, 132.99, 134.37, 134.63, 136.25, $166.89\left(\mathrm{~d},{ }^{1} J\left({ }^{103} \mathrm{Rh}, \mathrm{C}\right)=47.6 \mathrm{~Hz}, \mathrm{CN}_{2}\right)$, 188.84; MS (ESI) m/e 870.9 ($\left.\mathrm{M}^{+}-\mathrm{OAc}\right), 803.0\left(\mathrm{M}^{+}-\mathrm{I}\right)$; Anal. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Rh}$ requires: C 49.06, H 3.14, N 6.02. Found: C 49.42, H 3.23, N 5.70\%.

Figure 2: The ORTEP draw of Rh(III)-NHC complex 7.
Selected bond lengths and angles: Rh-C(carbene) $1.956(14)$ and $1.972(13) \AA$, Rh-O 2.175(9) and 2.174(9) Å, C1-Rh1-C34 98.1 .

The crystal data for $\mathrm{Rh}(\mathrm{III})$-NHC complex 7: empirical formula: $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{2.5} \mathrm{I}_{2} \mathrm{Rh}$, formula weight: 966.41, temperature: 293(2) K, crystal system, space group: Orthorhombic, P2(1)2(1)2(1), unit cell dimensions: $\mathrm{a}=17.4433(9) \AA, \mathrm{b}=17.9331(9) \AA, \mathrm{c}=27.9530(14) \AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}$, $\mathrm{V}=8744.0(8) \AA^{3}, \mathrm{Z}_{\text {value }}=8, \mathrm{D}_{\text {calc }}=1.468 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{~F}_{000}=3776$, Crystal size: $0.215 \times 0.098 \times 0.062$ mm , Data/restraints/parameters $=20291 / 5 / 874$, Final R indices $[I>2 \sigma(I)]: \mathrm{R} 1=0.0663$, wR2 $=$ 0.1599 , R indices (all data): $\mathrm{R} 1=0.1872$; wR2 $=0.1940$. Its crystal structure has been deposited at the Cambridge Crystallographic Data Center and has been allocated the deposition numbers: CCDC 209243.

The Rh-catalyzed Enantioselective Hydrosilylation Reaction:

For an initial investigation of catalysts $\mathbf{6}$ and $7(1.0 \mathrm{~mol} \%)$ in the reduction of acetophenone with diphenylsilane disclosed that chiral $\mathrm{Rh}(\mathrm{III})$ complex 7 resulted in higher enantioselectivity (Table 1, entry 2), while chiral $\mathrm{Rh}(\mathrm{I})$ complex $\mathbf{6}$ gave poor result under the same conditions (Table 1, entry 1). The solvent effect has been examined as well. We found that THF is the best solvent among toluene, ether and dichloromethane (Table 1, entries 2-5). The reaction temperature did not significantly affect the enantiomeric excess (Table 1, entries 6-8). Using $2.0 \mathrm{~mol} \%$ of catalyst 7, the reaction can be completed within 24 h and the corresponding $(R)-1$-phenyl ethanol can be obtained in 98% ee and 87% yield (Table 1, entry 6).

Table 1. Axially chiral Rh complexes catalyzed enantioselective hydrosilylation of acetophenone.

Entry	Catalysts (mol\%)	Solvent	Temp./ $\left({ }^{\circ} \mathrm{C}\right)$	Time/(h)	Yield/(\%) ${ }^{\text {a }}$	ee/(\%) ${ }^{\text {b }}$	Config. ${ }^{\text {c }}$
1	6 (1 mol\%)	THF	15	48	77	23	R
2	7 (1 mol\%)	THF	15	48	77	98	R
3	7 (1 mol\%)	Toluene	15	48	74	96	R
4	7 (1 mol\%)	$\mathrm{Et}_{2} \mathrm{O}$	15	48	64	96	R
5	7 (1 mol\%)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	15	48	33	49	R
6	7 (2 mol\%)	THF	15	24	87	98	R
7	7 (2 mol\%)	THF	0	24	66	98	R
8	7 (2 mol\%)	THF	45	24	82	94	R

[a] Isolated yields. [b] Determined by chiral HPLC analysis. [c] Absolute stereochemistry determined by comparison of the sign of optical rotation to literature values.

Under the optimized reaction conditions, we subsequently examined the reduction of other aryl alkyl ketones. The results were summarized in Table 2. Various aryl alkyl ketones can be smoothly reduced to give the corresponding sec-alcohol in $>92 \%$ ee and good yields under mild conditions (Table 2, entries 1-9). 2-Bromoacetophenone was also reduced in 97% ee and 92% yield under the same conditions (Table 2, entry 10).

Table 2. The chiral Rh complexes catalyzed enantioselective hydrosilylation of ketones
(
[a] Isolated yields; [b] Determined by chiral HPLC.

For more challenging substrates such as dialkyl ketones, adamantyl methyl ketone $\mathbf{8 k}$ was reduced in 96% ee and 96% yield under the same mild conditions (Table 3, entry 1). Other dialkyl
ketones $\mathbf{8 l}$ and $\mathbf{8 m}$ also can be reduced in good enantiomeric excesses and yields under the same conditions (Table 3, entries 2 and 3).

Table 3. The chiral Rh complexes catalyzed enantioselective hydrosilylation of aliphatic ketones

Entry
[a] Isolated yields. [b] Determined by chiral HPLC or GC. [c] Determined by chiral HPLC analysis of its N -phenyl carbamate derivative. [d] Determined by chiral GC analysis of its acetate derivative.

General Procedure for the Rh-catalyzed Enantioselective Hydrosilylation Reaction:

Under an Ar atmosphere, the ketones (0.5 mmol) and $\mathrm{PhSiH}_{2}(138 \mathrm{mg}, 0.75 \mathrm{mmol})$ were added to a solution of the Rh complex (0.01 mmol) in 2 mL of anhydrous THF. The reaction mixture was stirred at reaction temperature. The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and 0.5 N $\mathrm{HCl}(0.5 \mathrm{~mL})$. The resulting aqueous solution was stirred for 0.5 h at room temperature and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: pentane $/ \mathrm{Et}_{2} \mathrm{O}=10: 1-4: 1$) to give the corresponding sec-alcohols. The enantiomeric excess of the obtained alcohols was determined by chiral HPLC or GC.
(R)-1-Phenylethanol (9a): Yield: 87\% (53 mg). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.50(\mathrm{~d}, J=$ $\left.6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.95(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.89(\mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.22-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;[\alpha]^{20}{ }_{\mathrm{D}}$ $=47.4\left(\mathrm{c} 2.60, \mathrm{CHCl}_{3}\right)$ for 98% ee; Chiralcel OJ, hexane $/ i-\mathrm{PrOH}=95 / 5,0.7 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{S}=$ $19.457 \mathrm{~min}, t_{R}=21.737 \mathrm{~min}$.
(\boldsymbol{R})-1-(Naphthanen-2-yl)ethanol (9b): Yield: 91% (78 mg). $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(300} \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta$
$1.55\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.10(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 5.02(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.40-7.55(\mathrm{~m}, 3 \mathrm{H}$, ArH), 7.77-7.86 (m, 4H, ArH); $[\alpha]^{20}{ }_{\mathrm{D}}=34.95$ (c 3.85, EtOH) for 96% ee; Chiralcel OJ, hexane $/ i-\operatorname{PrOH}=95 / 5,0.7 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{S}=23.031 \mathrm{~min}, t_{R}=29.146 \mathrm{~min}$.
(\boldsymbol{R})-1-(4-Bromophenyl)ethanol (9c): Yield: $88 \%(89 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) δ $1.45\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.17(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.82(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.20-7.27(\mathrm{~m}, 2 \mathrm{H}$, ArH); 7.42-7.50 (m, 2H, ArH); $[\alpha]^{20}=45.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$ for 95% ee; Chiralcel OJ, hexane $/ i-\mathrm{PrOH}=95 / 5,0.7 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{S}=18.579 \mathrm{~min}, t_{R}=20.060 \mathrm{~min}$.
(\boldsymbol{R})-1-(4-Flurophenyl)ethanol (9d): Yield: $86 \%(61 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) δ $1.48\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.90(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.88(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.99-7.06(\mathrm{~m}, 2 \mathrm{H}$, ArH), 7.30-7.37 (m, 2H, ArH); $[\alpha]^{20}{ }_{\mathrm{D}}=34.0\left(\mathrm{c} 1.65, \mathrm{CHCl}_{3}\right.$) for 95% ee; Chiralpak AS, hexane $/ i-\operatorname{PrOH}=95 / 5,0.7 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{R}=9.580 \mathrm{~min}, t_{S}=10.607 \mathrm{~min}$.
(R)-1-(4-Methylphenyl)ethanol (9e): Yield: $93 \%(63 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) δ $1.45\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.17(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.81(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 7.12-7.19 (m, 2H, ArH), 7.20-7.28 (m, 2H, ArH); $[\alpha]^{20}{ }_{\mathrm{D}}=46.8$ (c 2.9, CHCl_{3}) for $98 \% \mathrm{ee}$; Chiralcel OJ, hexane $/ i-\mathrm{PrOH}=95 / 5,0.7 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{S}=23.500 \mathrm{~min}, t_{R}=26.473 \mathrm{~min}$.
(\boldsymbol{R})-1-(4-Methoxylphenyl)ethanol (9f): Yield: $96 \%(73 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, ~ \mathrm{TMS}$) $\delta 1.44\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.76(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.78(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 6.83-6.91 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.22-7.31 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) ;[\alpha]^{20}{ }_{\mathrm{D}}=44.87$ (c 3.2, CHCl_{3}) for 92% ee; Chiralpak AS, hexane $/ i-\mathrm{PrOH}=90 / 10,0.7 \mathrm{~mL} / \mathrm{min}, t_{R}=14.885 \mathrm{~min}, t_{S}=$ $18.491 \mathrm{~min} \square$
(R)-1-(3-Bromophenyl)ethanol (9g): Yield: $93 \%(94 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) δ $1.50\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.12(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.96(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.44-7.57(\mathrm{~m}, 3 \mathrm{H}$, ArH); $7.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) ;[\alpha]_{\mathrm{D}}^{20}=27.5\left(\mathrm{c} 2.2, \mathrm{CH}_{3} \mathrm{OH}\right)$ for 98% ee; Chiralcel OJ, hexane $/ i-\mathrm{PrOH}$ $=95 / 5,0.7 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{S}=22.192 \mathrm{~min}, t_{R}=25.838 \mathrm{~min}$.
(R)-1-(3-Trifluromethylphenyl)ethanol (9h): Yield: $82 \%(78 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 1.50\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.89(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.87(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 7.19-7.38$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{ArH}), 7.38-7.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}) .7 .53-7.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}) ;[\alpha]^{20}{ }_{\mathrm{D}}=25.4\left(\mathrm{c} 1.35, \mathrm{CH}_{3} \mathrm{OH}\right)$
for 98% ee; Chiralcel OJ, hexane $/ i-\mathrm{PrOH}=100 / 1,0.7 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{S}=27.539 \mathrm{~min}, t_{R}=$ 33.094 min .
(\boldsymbol{R})-1-(2-Methylphenyl)ethanol (9i): Yield: 85% (58 mg). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) δ $1.47\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.76(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.14(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, 7.12-7.26 (m, 3H, ArH), $7.52(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;[\alpha]^{20}{ }_{\mathrm{D}}=54.1$ (c 1.6, EtOH) for $92 \% \mathrm{ee}$; Chiralpak AD, hexane $/ i-\mathrm{PrOH}=95 / 5,0.7 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{R}=10.837 \mathrm{~min}, t_{S}=12.083 \mathrm{~min}$.
(R)-2-Bromo-1-phenylethanol (9j): Yield: $92 \%(93 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) δ $2.69(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.54\left(\mathrm{dd}, J_{l}=8.7 \mathrm{~Hz}, J_{2}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 3.64\left(\mathrm{dd}, J_{l}=3.3\right.$ $\left.\mathrm{Hz}, J_{2}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.92\left(\mathrm{dt}, J_{1}=3.3 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 7.33-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$; $[\alpha]^{20}{ }_{\mathrm{D}}=48.4\left(\mathrm{c} 2.6, \mathrm{CHCl}_{3}\right)$ for 97% ee; Chiralcel OJ, hexane $/ i-\mathrm{PrOH}=95 / 5,0.7 \mathrm{~mL} / \mathrm{min}, 254$ $\mathrm{nm}, t_{S}=28.360 \mathrm{~min}, t_{R}=30.360 \mathrm{~min}$.
(\boldsymbol{R})-1-(Adamantly)ethanol (9k): Yield: $96 \%(85 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.10$ $\left(\mathrm{d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 1.44-1.74(\mathrm{~m}, 12 \mathrm{H}), 1.95-2.02(\mathrm{~m}, 3 \mathrm{H}), 3.29(\mathrm{q}, J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;[\alpha]^{20}{ }_{\mathrm{D}}=1.0\left(\mathrm{c} 2.0, \mathrm{CHCl}_{3}\right)$ for 96% ee;
Derivation with phenyl isocyanate: the alcohol (0.4 mmol), phenyl isocycanate (0.4 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{mmol})$ were stirred in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature for 12 h . Volatiles were removed under reduced pressure and residue was purified by a silica gel flash column chromatography (eluent: hexane $/ \mathrm{EtOAc}=25 / 1$) to afford the corresponding carbamate derivative for the HPLC determination of enantiomeric excess. Chiralcel OJ, hexane $/ i-\mathrm{PrOH}=95 / 5,0.7$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{S}=7.043 \mathrm{~min}, t_{R}=9.042 \mathrm{~min}$.
(R)-4-(4-Methoxyphenyl)-2-butanol (91): Yield: 87% (78 mg). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 1.22\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.69-1.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.59-2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.78(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.81(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.81-6.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.10-7.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ;[\alpha]^{20}{ }_{\mathrm{D}}=$ $-11.20\left(\mathrm{c} 3.5, \mathrm{CHCl}_{3}\right)$ for 71% ee; Chiralpak AD, hexane $/ i-\mathrm{PrOH}=95 / 5,0.7 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t_{S}=$ $15.900 \mathrm{~min}, t_{R}=16.673 \mathrm{~min}$.
(R)-Noan-2-ol (9m): Yield: 86\% (62 mg). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.17\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.23-1.50\left(\mathrm{~m}, 12 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{6}\right), 1.96(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH})$, 3.73-3.80 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$) ; $[\alpha]^{20}{ }_{\mathrm{D}}=-5.32\left(\mathrm{c} 3.1, \mathrm{CHCl}_{3}\right)$ for 67% ee;

Derivation with acetyl chloride: The alcohol (0.4 mmol) was dissolved in anhydrous THF (4 mL),
acetyl chloride $(2.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{mmol})$ were added and the mixture kept at ambient temperature for 12 h . The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$. The organic compound was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The filtrate was used for the GC determination of the enantiomeric excess. Rt- β Dexcst ${ }^{\mathrm{TM}} 30 \mathrm{mx} 0.25 \mathrm{~mm} \times 0.25 \mathrm{um}, 110^{\circ} \mathrm{C}$, Carrier: $\mathrm{N}_{2} 10$ psi. $t_{S}=15.960 \mathrm{~min}, t_{R}=17.250 \mathrm{~min}$.

```
Software Version: 4.1<2F12>
Date: 03-4-14 9:45
Sample Name : D198-RAC
Data File : D:\TC4\DATA\CAO\CAP 008K.RAW Date: 03-4-14 9:01
Sequence File: D:\TC4\DATA\CAO\CAP.SEQ Cycle: 1 Channel : A
Instrument : 970A__0 Rack/Vial: 0/0 Operator: cao
Sample Amount : 1.0000 Dilution Factor : 1.00
```


REPORT							
Peak \#	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]	Norm. Area [\%]	BL	Area/Height [sec]
1	23.184	16045640.75	319195.59	49.88	0.00	BB	50.2690
2	29.861	16123704.50	239871.14	50.12	0.00	BB	67.2182
		32169345.25	559066.73	100.00	0.00		

REPORT

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]	Norm. Area [\%]	BL	/Height [sec]
1	23.031	448689.50	10770.67	2.16	0.00	BB	41.6585
2	29.146	20309990.00	302515.29	97.84	0.00	BB	67.1371

0.00

REPORT

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { Time } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \sec \right]} \end{gathered}$	Height [uV]	Area [\%]	Norm. Area [\%]		Area/Height [sec]
1	5.964	133871.50	7366.33	1.71	0.00	BB	18.1734
2	14.551	26437.50	1201.58	0.34	0.00	BB	22.0023
3	16.973	22781.75	1064.82	0.29	0.00	BB	21.3949
4	18.397	3833404.50	102367.01	48.89	0.00	BB	37.4477
5	20.121	3824602.25	90183.44	48.78	0.00	BB	42.4091
7841097.50202183 .17100 .00					0.00		

Hexane : i- Prot $=$ PS: 5
***** MODEL 1022 RUNLOG for run: CH-9__67******
Run terminated manually on Channel A.

Chirapak As $254 \mathrm{~nm} \quad 0.7 \mathrm{~m} / \mathrm{min}$ Herane : i-ProH $=95: 5$

(CH-2_12.001) mu

\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2003
***** MODEL 1022 RUNLOG for run: $\mathrm{CH}-2 \ldots 68 * * * * * *$
Run terminated manually on Channel A .
Chiracel OJ $254 \mathrm{~nm} 0.7 \mathrm{~m} / \mathrm{min}$
File: CH-2_68.D01 d-201-rac
Run : 01
Path : C: \CH-6
d-201-rac Herane: i-proH=P5:5 Type: Sample
Collection : 10:08:58 Jun 112003
Integration: 10:08:58 Jun 112003
Method : LCTEST
Method : LCTEST [09:28:19 Jun 112003]
Inst : 1022 LC Plus

Method : LCTEST [09:28:19 Jun 11 2003]
PERCENT (AREA)

| Pk \# | RT | Area | Height BC | Area Percen |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 4.813 | 80954 | 0.6140 T | 0.0962 |
| 2 | 5.193 | 110713 | 1.1061 T | 0.1316 |
| 3 | 5.420 | 272782 | 1.8205 | 0.3241 |
| 4 | 9.713 | 156060 | 0.9315 | 0.1854 |
| 5 | 11.267 | 293514 | 1.6073 | 0.3488 |
| 6 | 17.887 | 921037 | 3.4495 T | 1.0944 |
| 7 | 18.473 | 1009556 | 3.2764 T | 1.1996 |
| S | 19.687 | 1922607 | 5.6637 T | 2.2845 |
| 9 | 21.420 | 1912632 | 5.3350 | 2.2726 |
| 10 | 24.127 | 38620792 | 66.0974 | 45.8902 |
| 11 | 27.940 | 38780868 | 56.9497 | 46.0804 |
| 12 | 33.553 | 77644 | 0.2353 | 0.0923 |
| 12 Peaks > Area Reject | 84159160 | Total Area | | |
| 12 | Peaks > Height Reject | 147.086 | Total Height | |

($\mathrm{CH}-2 \ldots 68 . \mathrm{DO1}$) mu

$\begin{aligned} & \text { Software Version: 4.1<2F12> } \\ & \text { Date: } 03-6-6 \text { 13:56 }\end{aligned} \quad \mathrm{CH}_{3} \mathrm{O}-\mathrm{OH}$ (rac) ChirapaK As 254 mm Sample Name : d-202rac Data File : D: \TC4 \DATA\CAO\CAP 018T.RAW Date: 03-6-6 $13: 30$
Sequence File: D: \TC4\DATA\CAO\CAP.-SEQ Cycle: 1 Channel : A
Instrument : 970A__0 Rack/Vial: 0/0 Operator: cao
Sample Amount : $\overline{1} . \overline{0} 000 \quad$ Dilution Factor : 1.00

REPORT

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{\star} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]	Norm. Area [\%]		Area/Height [sec]
1	14.208	1466007.25	54186.44	49.99	0.00	BB	27.0549
2	17.113	1466662.00	43933.82	50.01	0.00	BB	33.3834
		2932669.25	98120.26	100.00	0.00		

```
Software Version: 4.1<2F12>
Date: 03-6-6 14:17
```



```
Chirapak As 254 nm \(0.7 \mathrm{ml} / \mathrm{min}\)
Sample Name : d-202-106
Data File : D: \TC4 \DATA\CAO\CAP 018U. RAW Date: 03-6-6 \({ }^{\text {Hera }} 13: 52\)
Sequence File: D: \TC4\DATA\CAO\CAP.-SEQ Cycle: 1 Channel : A
Instrument : 970A_-_0 Rack/Vial: 0/0 Operator: cap
Sample Amount : \(\overline{1} . \overline{0} 000\) Dilution Factor : 1.00
```


REPORT

REPORT

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [$\%$]	Norm. Area [\%]		Area/Height [sec]
1	5.621	145266.00	7308.11	1.10	0.00	BB	19.8774
2	10.584	92014.00	5379.62	0.70	0.00	BB	17.1042
3	21.672	6488531.00	116414.13	49.19	0.00	BB	55.7366
4	25.974	6464067.00	98854.16	49.01	0.00	BB	65.3899
13189878.00227956 .02100 .00					0.00		

```
Software Version: 4.1<2F12>
Date: 03-6-12 16:28
Sample Name : d-207-120 Br
E)
Data File : D:\TC4\DATA\CAO\CAP_019R.RAW Date: 03-6-12 15:55
Sequence File: D:\TC4\DATA\CAO\CAP.SEQ Cycle: 1 Channel : A
Instrument : 970A_-_0 Rack/Vial: 0/0 Operator: cao
Sample Amount : \overline{1.0000 Dilution Factor : 1.00}
```


REPORT

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { Time } \\ & {[\min]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]	Norm. Area [\%]	BL	Area/Height [sec]
1	5.645	17623.00	1704.48	0.22	0.00	BB	10.3392
2	10.645	44362.00	2516.44	0.56	0.00	BB	17.6289
3	22.192	82201.50	2512.46	1.04	0.00	BB	32.7176
4	25.838	7742756.50	116513.31	98.17	0.00	BB	66.4538

```
Software Version: 4.1<2F12>
Date: 03-6-2 13:13
Sample Name : d-208rac
```



```
Chiracel oj \(254 \mathrm{~nm} 0.7 \mathrm{~m} / \mathrm{min}\)
Herane: i-proH = 100:1
Sample Name : d-208rac
Data File : D: \TC4 \DATA\CAO\CAP 017N.RAW Date: 03-6-2 12:23
Sequence File: D: \TC4 \DATA\CAO\CAP. SEQ Cycle: 1 Channel : A
Instrument : 970A_-0 Rack/Vial: 0/0 Operator: cao
Sample Amount : \(\overline{1} . \overline{0} 000\) Dilution Factor : 1.00
```


REPORT

REPORT

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]	Norm. Area [\%]		Area/Height [sec]
1	5.267	11360.50	672.11	0.42	0.00	BB	16.9029
2	7.079	251399.50	22639.38	9.21	0.00	BB	11.1045
3	9.599	429915.00	1912.06	15.75	0.00	BB	224.8437
4	27.539	25211.27	619.90	0.92	0.00	*BB	40.6700
5	33.094	2012158.50	33100.79	73.70	0.00	BB	60.7888

Chiracel 0] $254 \mathrm{~nm} 0.7 \mathrm{~mL} / \mathrm{min}$

Herane : i-ProH $=\mathrm{Pr}_{5}: 5$
***** MODEL 1022 RUNLOG for run: CH-2__09 ******
Run terminated manually on Channel A.


```
                    Chirapak AD Herane: i-proh = O5:5
File: CH-2__22.D01
    0.7mL/m:n 254 nm
        d-212-114
                CH3O-
    Run : 01
    Path : C:\CH-6
    Collection : 14:18:45 May 30 2003 Method : LCTEST
    Rntegration: 14:44:07 May 30 2003 Method : LCTEST }\quad[\begin{array}{lllll}{14:42:39 May 30 2003 ]}\end{array}
    Report : 14:44:10 May 30 2003 Method : LCTEST [ 14:42:39 May 30 2003 ]
        PERCENT ( AREA )
```


REPORT

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	Time [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{uV}^{*} \mathrm{sec}\right]} \end{gathered}$	Height [uV]	Area [\%]	Norm. Area [\%]		Area/Height [sec]
1	6.647	33597.56	2462.34	1.26	0.00	BV	13.6446
2	7.155	1323046.94	94662.19	49.59	0.00	VB	13.9765
3	9.228	1311405.00	68995.95	49.15	0.00	BB	19.0070
2668049.50166120 .48100 .00					0.00		

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2003

Software Version: 4.1<2F12> Date: 03-6-12 14:42
Sample Name : d-215-117

Data File : D:\TC4\DATA\CAO\CAP_019P.RAW Date: 03-6-12 14:23
Sequence File: D:\TC4\DATA\CAO\CAP.SEQ Cycle: 1 Channel : A
Instrument : 970A__0 Rack/Vial: 0/0 Operator: cao
Sample Amount : $\overline{1} . \overline{0} 000$ Dilution Factor : 1.00

REPORT

***** MODEL 1022 RUNLOG for run: S22___29 ******
Run terminated manually on Channel A.
***** MODEL 1022 RUNLOG for run: S22 \qquad 30 ******

Run terminated manually on Channel A.
***** MODEL 1022 RUNLOG for run: S22 \qquad 31 ******

Run terminated manually on Channel A.
***** MODEL 1022 RUNLOG
Rụn S22 \qquad 32 abandoned at 09:05:41 Tue Apr 292003
***** MODEL 1022 RUNLOG for run: S22 \qquad 32 ******

Run terminated manually on Channel A.
***** MODEL 1022 RUNLOG for run: S22 \qquad 33

Run terminated manually on Channel A.
***** MODEL 1022 RUNLOG for run: S22 \qquad 34

Run terminated manually on Channel A.
***** MODEL 1022 RUNLOG for run: S22 \qquad 35 ******

Run terminated manually on Channel A.
***** MODEL 1022 RUNLOG for run: S22 \qquad 36 ******

Run terminated manually on Channel A.
***** MODEL 1022 RUNLOG for run: S22 \qquad 37 ******

Run terminated manually on Channel A.

File : S22_24.D01
D-203-107a
Run : 02
Path : C:
\$T\$
Collection : 10:40:00 Apr 282003 Method : XWD

Type : Sampl

Integration: 10:40:00 Apr 282003 Method : XWD [07:20

Report : 13:11:51 Apr 292003 Method : XWD

Pk \# RT Area
Height BC
Area Percent Height Percent
995.1762
38.8359 T
0.2981 T
34.4503

96.2104	93.1150
1.8873	3.6337
0.0160	0.0279
1.8863	3.2234

4 Peaks > Area Reject 156073904 Total Area
4 Peaks > Height Reject 1068.760 Total Height

PERCENT (AREA) \ MANUALLY ALTERED

Pk \# RT Area Height BC Area Percent Height Percent

1	3.403	165268704	995.0167	95.5927	93.5084
2	6.503	3113643	13.0103	1.8010	1.2227
3	14.477	2874628	35.9979	1.6627	3.3830
4	15.960	265290	3.5533	0.1534	0.3339
5	17.250	1366159	16.5157	0.7902	1.5521

5 Peaks > Area Reject 172888416 Total Area
5 Peaks > Height Reject 1064.094 Total Height

[^0]: 1) G. Giordano, R. H. Crabtree, Inorg. Synth. 1988, 28, 88.
