Supplementary informations

Lanthanide complexes derived from (R)-1,1'-binaphthyl-2,2'bis(neopentylamine) $-\left\{\mathbf{L i}(\mathbf{T H F})_{4}\right\}\left\{\operatorname{Ln}\left[(R)-\mathbf{C}_{20} \mathbf{H}_{12} \mathbf{N}_{2}\left(\mathbf{C}_{10} \mathbf{H}_{22}\right)\right]_{2}\right\}(\mathbf{L n}=\mathbf{S m}$, Yb) - novel catalysts for enantioselective intramolecular hydroamination.

Jacqueline Collin*a ${ }^{\text {a }}$, Jean-Claude Daran ${ }^{\text {b }}$, Emmanuelle Schulz ${ }^{\text {a }}$, Alexander Trifonov* ${ }^{\text {c }}$
${ }^{a}$ Laboratoire de Catalyse Moléculaire, ICMMO, Université Paris-Sud, 91405 Orsay, France
${ }^{b}$ Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse, France
${ }^{c}$ G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinia 49, 603600 Nizhny Novgorod GSP-445, Russia
E-mail : jacollin@icmo.u-psud.fr. Fax 33 (0) 1 69154680.Tel 33 (0) 169154740

Experimental .

General comments
All manipulations were carried out under an argon atmosphere using standard Schlenk or glove box techniques. THF, $\mathrm{C}_{6} \mathrm{D}_{6}$ and $\mathrm{C}_{7} \mathrm{D}_{8}$ were distilled from sodium benzophenone ketyl, hexane and toluene from CaH_{2}. All solvents were degassed by three freeze-pump-thaw cycles and stored in the glove box. $\operatorname{Sm}\left[\mathrm{N}(\mathrm{TMS})_{2}\right]_{3}$ was prepared by the literature procedure. ${ }^{1}$ Bruker AM 250, and Bruker DRX 400 NMR spectrometers, (operating at 250 , and 400 MHz respectively) were used for recording the NMR spectra. Infrared spectra were recorded as Nujol mulls using NaCl or CsI plates on a Perkin-Elmer 1000 FT-IR spectrometer and are reported in cm^{-1}. Optical rotations were measured with a Perkin-Elmer 341 polarimeter.

Syntheses

$\left\{\mathbf{L i}(\mathbf{T H F})_{\mathbf{4}}\right\}\left\{\mathbf{S m}\left[(\boldsymbol{R})-\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{1 2}} \mathbf{N}_{\mathbf{2}}\left(\mathbf{C}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{2 2}}\right) \mathbf{I}_{\mathbf{2}}\right\} \mathbf{2} . \mathrm{SmCl}_{3}(0.036 \mathrm{~g}, 0.140 \mathrm{mmol})\right.$ was slowly added to a solution of $0.122 \mathrm{~g}(0.280 \mathrm{mmol})$ of $\mathbf{1}$ in 5 mL of THF at $20^{\circ} \mathrm{C}$ under vigorous stirring. The reaction mixture was stirred for 3 h , THF evaporated in vacuo and the resulted solid extracted with toluene (15 mL). The extracts were filtered, toluene was evaporated and the solid residue was dissolved in 2 mL of THF. Slow condensation of hexane in the THF solution at $20^{\circ} \mathrm{C}$ resulted in $0.100 \mathrm{~g}(55 \%)$ of $\mathbf{2}$ as orange crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}, \delta\right)$: 9.39 (bs, 2H), 8.70 (bs, 2H), 7.96 (bs, 2H), 7.79 (bs, 2H), 7.54 (bs, 2H), 7.34 (bs, 2H), 7.12 (bs, 2H), 6.87 (bs, 2H), 5.24 (bs, 4H), 4.64 (bs, 4H), 3.64, (bs, 16H), 2.53 (bs, 4H), 1.47 (bs, 16 H), 1.05 (bs, 4 H), 0.87 (bs, 18H), 0.32 (bs, 18 H). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}, \delta\right): 145.63$,
134.71, 129.93, 126.81, 124.48, 124.20, 122.23, 121.26, 119.70, 114.22, 112.01, 110.64, $68.09,61.50,53.36,31.21,29.10,28.57,27.24,25.77$. IR (CsI, Nujol, cm^{-1}) : 3050(w), 1597(m), 1499(m), 1335(m), 1261(m), 1194(w), 1096(s), 1040(s), 1022(s), 886(m), 807(s), 744(s). Anal. Calcd for $\mathrm{C}_{76} \mathrm{H}_{100} \mathrm{LiN}_{4} \mathrm{O}_{4} \mathrm{Sm}: \mathrm{C} 70.71$; H 7.80; Found: C 70.04; H 7.36.
$\left\{\mathbf{L i}(\mathbf{T H F})_{\mathbf{4}}\right\}\left\{\mathbf{Y b}\left[(\boldsymbol{R})-\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{1 2}} \mathbf{N}_{\mathbf{2}}\left(\mathbf{C}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{2 2}}\right)\right]_{\mathbf{2}}\right\} \mathbf{3} . \mathrm{YbCl}_{3}(0.064 \mathrm{~g}, 0.229 \mathrm{mmol})$ was slowly added to a solution of $0.200 \mathrm{~g}(0.458 \mathrm{mmol})$ of 1 in 5 mL of THF at $20^{\circ} \mathrm{C}$ under vigorous stirring. The reaction mixture was stirred for 3 h , THF evaporated in vacuo and the resulted solid was extracted with toluene (15 mL). The extracts were filtered, toluene was evaporated and the solid residue was dissolved in 2 mL of THF. Slow condensation of hexane in the THF solution at $20^{\circ} \mathrm{C}$ resulted in 0.186 g (62%) of $\mathbf{3}$ as reddish-brown crystals. IR (CsI, Nujol, cm ${ }^{-}$ $\left.{ }^{1}\right): 3050(\mathrm{w}), 1608(\mathrm{~s}), 1538(\mathrm{~m}), 1496(\mathrm{~s}), 1336(\mathrm{~m}), 1282(\mathrm{~m}), 1151(\mathrm{~s}), 1094(\mathrm{~s}), 1042(\mathrm{~s})$, 887(m), 810(s), 744(s). Anal. Calcd for $\mathrm{C}_{76} \mathrm{H}_{100} \mathrm{LiN}_{4} \mathrm{O}_{4} \mathrm{Yb}: \mathrm{C} 69.49$; H 7.67; Found: C 68.88; H 7.87.

NMR-scale hydroamination-cyclisation of 1-(aminomethyl)-1-allylcyclohexane 4 and determination of enantiomeric excesses

Inside the glove box a solution of 20 mg (0.131 mmol) of 1-(aminomethyl)-1-allylcyclohexane $\mathbf{4}$ in $0.5 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathrm{C}_{7} \mathrm{D}_{8}$ dried on molecular sieves was added to complex $\mathbf{2}$ or $\mathbf{3}$ (see Table 1 for catalytic ratio) charged in an NMR tube equipped with a teflon stopcock. After disappearance of the olefinic protons monitored by NMR, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the amine 5 was transformed in the corresponding amide by reaction with Mosher chloride. ${ }^{2}$ The reaction mixture was diluted with $2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and treated with $100 \mu \mathrm{l}$ of $\mathrm{Et}_{3} \mathrm{~N}, 20 \mathrm{mg}$ of DMAP and $30 \mu \mathrm{l}$ of $(R)-(-)-\alpha$-methoxy- $\alpha-($ trifluoromethyl)phenylacetyl chloride. After 2 h stirring at room temperature the mixture was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After drying, the crude product dissolved in ether was injected on a GC capillary column DB- $1,\left(80^{\circ} \mathrm{C}-10^{\circ} \mathrm{C} / \mathrm{min}-200^{\circ} \mathrm{C}-10 \mathrm{~min}-10^{\circ} \mathrm{C} / \mathrm{min}-250^{\circ} \mathrm{C}-10 \mathrm{~min}\right.$, injector $\left(250^{\circ} \mathrm{C}\right)$, detector $\left(250^{\circ} \mathrm{C}\right)$). Retention times of diastereoisomeric amides formed by reaction with the cyclised amine 3-methyl-2-aza-spiro[4,5]decane 5 and of the amide formed by reaction with the non reacted 1-(aminomethyl)-1-allyl-cyclohexane 4 are respectively 21.6 min, $22.4 \mathrm{~min}, 23.15 \mathrm{~min}$. Enantiomeric excesses of methyl-2-aza-spiro[4,5]decane and GC yields in the cyclised product were determined by integration of these three peaks.

Preparative enantioselective hydroamination-cyclisation of 1-(aminomethyl)-1-allylcyclohexane

Inside the glove box a solution of 101 mg (0.654 mmol) of 1-aminomethyl-1-allylcyclohexane in $1 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6}$ dried on molecular sieves is added on $34 \mathrm{mg}(0.026 \mathrm{mmol})$ of complex $\mathbf{3}$ in $2 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6}$. After 3h stirring at room temperature, the solvent is evaporated and the residue is distillated in Kugelrohr apparatus (b. p. $20 \mathrm{~mm} \mathrm{Hg}=144^{\circ} \mathrm{C}$) to afford the spiropyrrolidine 5 in 55% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta\right): 3.08(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~d}, 1 \mathrm{H}, J=11$ $\mathrm{Hz}), 2.52(\mathrm{~d}, 1 \mathrm{H}, J=11 \mathrm{~Hz}), 2.14(\mathrm{bs}, 1 \mathrm{H}), 1.69(\mathrm{dd}, 1 \mathrm{H}, J=11 \mathrm{~Hz}, J=7 \mathrm{~Hz}), 1.32(\mathrm{~m}, 10 \mathrm{H})$, $1.07(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz}), 0.93(\mathrm{dd}, 1 \mathrm{H}, J=10 \mathrm{~Hz}, J=9 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}, \delta\right): 59.30$, 54.42 , 47.84, 44.37, 39.00, 37.62, 26.46, 24.24, 24.06, 21.71. IR ($\mathrm{NaCl}_{2}, \mathrm{CCl}_{4} \mathrm{~cm}^{-1}$) : 3854(w), 3747(w), 3672(w), 3650(w), 3630(w), 2928(s), 2856(m), 1450(w), 1376(w). MS electrospray $\mathrm{M}+\mathrm{H}^{+} 154.2,100 \%[\alpha]_{\mathrm{D}}{ }^{20}=+17\left(c 2.3, \mathrm{CHCl}_{3}\right)$, for 40% enantiomeric excess.

1 D. C. Bradley, J. S. Ghotra and F. A. Hart, J. Chem. Soc. Dalton Trans., 1973, 1021-1023. 2 J. A. Dale, D. L. Dull and H. S. Mosher, J. Org. Chem., 1969, 34, 2543-2549.

