[†]Crystal and molecular structure of 5-[2-(4methoxyphenyl)ethyl]-1,2,3-oxadiazole 3-oxide (2a)

Abstract

We present the crystal and molecular structure of 5-[2-(4-methoxyphenyl)ethyl]-1,2,3-oxadiazole 3-oxide (2a)

Comment

The study of the titled structure was undertaken to establish its three dimensional structure. Geometries are tabulated below. All diagrams and calculations were performed using maXus (Bruker Nonius, Delft & MacScience, Japan).

Experimental

Crystal data

 $\begin{array}{l} C_{11}H_{12}N_2O_3\\ C_{11}H_{12}N_2O_3\\ M_r = 220.228\\ Monoclinic\\ P2_1/c\\ a = 5.6130 \ (4) \AA\\ b = 8.9250 \ (5) \AA\\ c = 22.154 \ (2) \AA\\ \alpha = 90.00^\circ\\ \beta = 95.563 \ (3)^\circ\\ \gamma = 90.00^\circ\\ V = 1104.60 \ (13) \AA^3 \end{array}$

Data collection

DIP Image plate
IP
Absorption correction: none
1973 measured reflections
1863 independent reflections
1417 observed reflections

Refinement

Refinement on F^2 fullmatrix least squares refinement R(all) = 0.0674 R(gt) = 0.0538 wR(ref) = 0.1580 wR(gt)= 0.1412 S(ref) = 1.065

[†]*Prepared by maXus*

Z = 4 $D_x = 1.324 \text{ Mg m}^{-3}$ Density measured by: not measured fine-focus sealed tube Mo K α radiation $\lambda = 0.71073$ $\mu = 0.098 \text{ mm}^{-1}$ T = 298 K plate Colourless Crystal source:Local laboratory

Criterion: >2sigma(I) $\theta_{max} = 25.78 \circ$ $h = 0 \rightarrow 6$ $k = 0 \rightarrow 10$ $l = -26 \rightarrow 26$

1863 reflections 145 parameters 0 restraints Only coordinates of H atoms refined Calculated weights calc $\Delta/\sigma_{max} = 0.000$ $\Delta\rho_{max} = 0.168e\text{Å}^3$ $\Delta\rho_{min} = -0.305e\text{Å}^3$ Extinction correction: none Atomic scattering factors from International

Data collection: DIP Image plate Cell refinement: Scalepack(HKL) Data reduction: maXus (Mackay et al., 1999) Program(s) used to refine structure: *SHELXL*-97 (Sheldrick, 1997)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

	$U_{eq} = 1/3 \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_{i\cdot} a_j$.					
	Х	у	Z	U_{eq}		Occ
N1	0.2762 (3)	0.17174 (19)	0.51164 (8)	0.0784 (5)	1	
C2	0.8731 (4)	-0.0575 (2)	0.18234 (8)	0.0697 (5)	1	
O3	1.0095 (3)	-0.08965 (19)	0.13600 (6)	0.0922 (5)	1	
C4	0.6115 (4)	-0.0120 (2)	0.28184 (9)	0.0724 (5)	1	
C5	0.2837 (4)	0.1031 (2)	0.45599 (9)	0.0737 (5)	1	
C6	0.4670 (4)	0.1648 (2)	0.43143 (9)	0.0726 (5)	1	
C7	0.9407 (4)	-0.1268 (2)	0.23726 (9)	0.0785 (6)	1	
08	0.5675 (3)	0.26679 (19)	0.47131 (8)	0.1000 (6)	1	
C9	0.5465 (4)	0.0547 (2)	0.22634 (10)	0.0798 (6)	1	
C10	0.6751 (4)	0.0341 (2)	0.17703 (9)	0.0764 (6)	1	
011	0.1291 (3)	0.14538 (19)	0.55044 (7)	0.1003 (6)	1	
C12	0.5798 (4)	0.1449 (2)	0.37425 (9)	0.0783 (6)	1	
C13	0.8125 (4)	-0.1031 (2)	0.28604 (9)	0.0776 (6)	1	
C14	0.4740 (4)	0.0163 (3)	0.33594 (10)	0.0849 (6)	1	
C15	0.9760 (6)	-0.0029 (3)	0.08279 (11)	0.1055 (8)	1	
N16	0.4443 (4)	0.2703 (2)	0.52256 (9)	0.0999 (6)	1	
H5	0.1497	0.0168	0.4432	0.088	1	
H7	1.0767	-0.1924	0.2415	0.094	1	
H9	0.4054	0.1160	0.2214	0.096	1	
H10	0.6288	0.0842	0.1394	0.092	1	
H12A	0.5624	0.2348	0.3504	0.094	1	
H12B	0.7467	0.1232	0.3837	0.094	1	
H13	0.8642	-0.1512	0.3238	0.093	1	
H14A	0.3117	0.0417	0.3220	0.102	1	
H14B	0.4756	-0.0726	0.3604	0.102	1	
H15A	1.0821	-0.0378	0.0543	0.127	1	
H15B	1.0097	0.1004	0.0923	0.127	1	
H15C	0.8133	-0.0125	0.0654	0.127	1	

Table 2. Anisotropic displacement parameters $(Å^2)$

			1 1	1		
	U_{11}	U_{12}	U ₁₃	U_{22}	U_{23}	U33
N1	0.0870 (13)	0.0062 (9)	0.0180 (9)	0.0727 (10)	0.0007 (8)	0.0774 (10)
C2	0.0723 (12)	-0.0003 (9)	0.0069 (9)	0.0687 (11)	-0.0031 (8)	0.0680 (11)
03	0.1005 (12)	0.0220 (9)	0.0208 (8)	0.1011 (11)	0.0025 (7)	0.0773 (9)
C4	0.0704 (13)	-0.0137 (9)	0.0106 (9)	0.0723 (12)	-0.0049 (8)	0.0752 (12)
C5	0.0769 (13)	0.0007 (9)	0.0126 (9)	0.0683 (11)	-0.0002 (9)	0.0770 (12)
C6	0.0744 (13)	0.0010 (9)	0.0085 (9)	0.0658 (11)	-0.0010 (8)	0.0777 (12)
C7	0.0737 (13)	0.0092 (10)	0.0031 (10)	0.0811 (13)	0.0051 (9)	0.0799 (13)
08	0.1053 (12)	-0.0291 (9)	0.0266 (9)	0.1013 (12)	-0.0220 (8)	0.0966 (11)
C9	0.0746 (13)	0.0114 (10)	0.0082 (10)	0.0797 (13)	0.0007 (10)	0.0853 (14)

C10	0.0820 (14)	0.0101 (10)	0.0034 (10)	0.0744 (12)	0.0057 (9)	0.0718 (12)
011	0.1161 (14)	-0.0030 (9)	0.0390 (10)	0.0974 (12)	-0.0042 (8)	0.0930 (11)
C12	0.0774 (13)	-0.0061 (10)	0.0177 (10)	0.0745 (12)	-0.0008 (9)	0.0850 (13)
C13	0.0790 (14)	-0.0051 (10)	0.0014 (9)	0.0823 (13)	0.0092 (9)	0.0704 (11)
C14	0.0810(15)	-0.0184(11)	0.0182(11)	0.0949(15)	-0.0082(10)	0.0809(13)
C15	0.130(2)	0.0091 (16)	0.0361(14)	0.0919(12) 0.1083(18)	0.0002(10)	0.0826(15)
N16	0.130(2)	-0.0216(12)	0.0246(11)	0.1003(10) 0.1001(14)	-0.0195(10)	0.0020(13)
NIO	0.1110 (10)	-0.0210 (12)	0.0240 (11)	0.1001 (14)	-0.0175 (10)	0.0707 (15)
		Table	3 . Geometric p	oarameters (Å, °	?)	
N1-011		1.270 (2)		C9—C10		1.379 (3)
N1—N16		1.295 (3)		C12—C14		1.514 (3)
N1—C5		1.381 (3)		С5—Н5		1.0942
C2—O3		1.369 (2)		С7—Н7		0.9600
C2-C10		1.376 (3)		С9—Н9		0.9599
C2—C7		1.384 (3)		C10—H10		0.9600
O3—C15		1.408 (3)		C12—H12A		0.9601
C4—C9		1.383 (3)		C12—H12B		0.9600
C4—C13		1 387 (3)		C13—H13		0 9600
C4-C14		1 508 (3)		C14—H14A		0 9600
C5-C6		1.300(3) 1.329(3)		C14—H14B		0.9599
C6-08		1.323(2)		C15—H15A		0.9601
C6-C12		1.555(2) 1 481(3)		C15—H15B		0.9601
C7 - C13		1.101(3) 1.371(3)		C15_H15C		0.9600
08N16		1.371(3) 1 386(3)		C15—1115C		0.9000
00 1110		1.500 (5)				
011—N1—	-N16	120.59 (18)		С13—С7—Н	17	119.3
011-N1-	-C5	126.86 (19)		С2—С7—Н7	7	120.4
N16—N1—	-C5	112.54 (18)		C10-C9-H	19	118.3
O3—C2—C	C10	124.48 (18)		C4—C9—H9)	119.4
O3—C2—C	27	116.10 (18)		C2—C10—H	110	120.0
C10-C2-	·C7	119.40 (19)		C9—C10—H	110	120.5
C2—O3—O	C15	118.28 (18)		C6—C12—H	I12A	110.0
C9—C4—C	213	117.06 (19)		C14—C12—	H12A	108.2
C9—C4—C	C14	121.6 (2)		C6—C12—H	I12B	109.1
C13—C4—	C14	121.35 (19)		C14—C12—	H12B	106.9
C6-C5-N	J1	105.85 (19)		H12A—C12-	—H12B	109.5
C5—C6—C	08	107.59 (18)		C7—C13—H	113	118.7
C5—C6—C	C12	135.45 (19)		C4—C13—H	113	119.8
O8—C6—C	C12	116.95 (18)		C4—C14—H	I14A	109.1
С13—С7—	·C2	120.3 (2)		C12—C14—	H14A	108.0
C6-08-N	N16	109.88 (16)		C4—C14—H	I14B	109.4
С10—С9—	·C4	122.3 (2)		C12—C14—	H14B	109.2
C2-C10-	·C9	119.47 (19)		H14A—C14-	—H14B	109.5
C6—C12—	C14	113.16 (17)		O3—C15—H	H15A	109.3
C7—C13—	·C4	121.53 (19)		O3—C15—H	H15B	109.7
C4—C14—	C12	111.65 (17)		H15A—C15-	—H15B	109.5
N1—N16—	-08	104.13 (17)		03—C15—F	H15C	109.3
C6—C5—H	15	136.6		H15A—C15-	—H15C	109.5
N1-C5-H	15	117.6		H15B-C15-	-H15C	109.5

References

Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus Computer Program for the Solution and Refinement of Crystal Structures. Bruker Nonius, The Netherlands, MacScience, Japan & The University of Glasgow.

Johnson, C. K. (1976). *ORTEP*--II. A Fortran Thermal--Ellipsoid Plot Program. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G & Spagna, R. (1999). J. Appl. Cryst. 32, 115--119.

Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

<Figure captions>