Supplementary Material

Cruciform π-systems: Hybrid phenylene-ethynylene/ phenylenevinylene oligomers

James N. Wilson, Mira Josowicz, Yiqing Wang, Jiri Janata and Uwe H. F. Bunz* Department of Chemistry and Biochemistry, Georgia Institute of Technology, 770 State St.,Atlanta,GA, 30332 USA. Fax: 01404385 1795; Tel: 01404385 1795; E-mail: uwe.bunz@chemistry.gatech.edu

Scheme 1. Two-step reaction scheme, substituent key and yields of compounds
2a-e and 3a-g.

Compounds 2a-e:

General procedure for compounds 2a-e: An oven-dried Schlenk flask cooled under nitrogen was charged with $\mathbf{1}, \mathrm{NaH}$ (2.5 eq), and dry THF. The flask was closed with a septum, a nitrogen-filled balloon was fitted to the arm and the stopcock was opened. With mild heating $\left(40^{\circ} \mathrm{C}\right)$, the solution turned a vivid purple-red. The aldehyde was introduced in small portions over 1 h with a syringe
 either as the pure oil or dissolved in dry THF. The reaction was allowed to stir with heat for another 30 min before workup. The small excess NaH was quenched with water and the mixture was extracted three times with chloroform. The chloroform layer was rinsed with brine and dried with
magnesium sulfate and reduced until a precipitate formed. The mixture crystallized from hexanes and was collected by suction filtration and dried under vacuum.

Compound 2a: Following the general procedure, $\mathbf{1}(0.630 \mathrm{~g}, 1.00 \mathrm{mmol})$, $\mathrm{NaH}(60.0 \mathrm{mg}, 2.50$ mmol), and 25.0 mL THF were combined. Benzaldehyde, ($233 \mathrm{mg}, 2.20 \mathrm{mmol}$) was then added. Work up and recrystallization yielded ($422 \mathrm{mg}, 79 \%$) of pale yellow crystals. MP: $228^{\circ} \mathrm{C}$ IR: 2915.2, 2840.2, 1458.8, 1437,3, 1348.1, 1069.7, 1041.1, 951.9, 887,6, 855.5, 809.1, 748.4, 691.3, 587.8. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 8.09(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.55\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=7.52 \mathrm{~Hz}\right), 7.38(\mathrm{t}, 4 \mathrm{H}, \mathrm{Ar}-$ $\left.\mathrm{H}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=7.33 \mathrm{~Hz}\right), 7.30\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=7.15 \mathrm{~Hz}\right), 7.20\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{H}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=15.95 \mathrm{~Hz}\right), 6.99$ $\left(\mathrm{d}, 2 \mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{H}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=16.13 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \oint 140.79,136.54,136.34,135.36,130.48$, 128.82, 128.40, 126.96, 100.28.

Compound 2b: Following the general procedure, $\mathbf{1}(0.630 \mathrm{~g}$ 1.00 mmol), $\mathrm{NaH}(60.0 \mathrm{mg}, 2.50 \mathrm{mmol})$, and 25.0 mL THF were combined. 4-pyridine carboxaldehyde, (0.236 g 2.20 mmol) was then added. Work up and recrystallization yielded pale yellow crystals ($0.413 \mathrm{~g}, 77.0 \%$). MP: $273^{\circ} \mathrm{C}$ IR: 3047.4, 3030.7, 3026.6, 1560.1, 1555.6, 1051.9, 956.1, 856.1, 801.9,
731.1, 672.8. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.62\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=3.84 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\right), 8.09(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-$ H), $7.40(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{H}), 6.93\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=16.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{C}-\mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=150.40,143.56,140.62,136.91,130.13,128.32,121.13,100.42$.

Compound 2c: Following the general procedure, 1 ($0.630 \mathrm{~g}, 1.00 \mathrm{mmol}$), NaH ($60.0 \mathrm{mg}, 2.50$ mmol), and 25.0 mL THF were combined. 4Methoxybenzaldehyde, ($300 \mathrm{mg}, 2.20 \mathrm{mmol}$) was then added. Work up and recrystallization yielded yellow crystals ($362 \mathrm{mg}, 60.9 \%$). MP: $213^{\circ} \mathrm{C}$ IR: 2920.6, 2899.3, 1506.7, 1503.1, 1244.3, 1175.0, 1029.3, 956.5, 845.6, 814.4. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.03(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.49(\mathrm{~m}, \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.17\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=23.1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}\right), 7.06(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=23.1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}\right), 6.97(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{H}), 3.83\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.11,140.91,136.24,131.94,129.67,128.62,128.50,114.49,100.43,55.60$.

2d

Compound 2d: Following the general procedure, 1 ($2.00 \mathrm{~g}, 3.17 \mathrm{mmol}$), $\mathrm{NaH}(228 \mathrm{mg}, 9.51 \mathrm{mmol})$, and 50 mL THF were combined. 4-(trifluoromethyl)benzaldehyde, $(1.22 \mathrm{~g}, 6.98 \mathrm{mmol})$ was then added. Work up and crystallization yielded bright yellow crystals ($1.53 \mathrm{~g}, 72 \%$). MP: 213-215 ${ }^{\circ}$ C IR: 3041.5, 2927.7, 1926.8, 1907.5, 1610.5, 1456.2, 1415.7, 1326.9, 1168.8, 1103.2, 1064.6, 956.6, 879.3, 813.9, 756.0, 732.9. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.09(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.64(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.29\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=16.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}\right), 7.02\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=16.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.87,140.04,136.82,132.96,131.24,131.1-129.8(\mathrm{~m}), 128.4-120.2(\mathrm{~m})$, 127.30, 126.04, 100.66. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=22.02$.

Compound 2e: Following the general procedure, $1(5.65 \mathrm{~g}, 8.57 \mathrm{mmol})$, $\mathrm{NaH}(1.00 \mathrm{~g}$, 25.0 mmol), and 250 mL THF were combined. 4-Dibutylamino benzaldehyde, $(5.00 \mathrm{~g}, 21.4$ mmol) was then added. Work up and crystallization yielded bright orange crystals ($5.18 \mathrm{~g}, 72 \%$). MP: 165° C IR: 2947.0, 2925.8, 2866.0, 1596.9, 1521.7, 1456.2, 1369.4, 1355.9, 1284.5, 1220.9, $1186.1,1149.5,1041.5,954.7,925.8,802.3 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.00(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.40\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=8.78\right.$, Ar-H), $6.92-6.85\left(\mathrm{dd}, 4 \mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=16.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}\right), 6.63\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=\right.$ $8.79 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 3.28\left(\mathrm{t}, 8 \mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=7.41 \mathrm{~Hz}, \alpha-\mathrm{CH}_{2}\right), 1.60-1.52\left(\mathrm{~m}, 8 \mathrm{H}, \beta-\mathrm{CH}_{2}\right), 1.39-1.31(\mathrm{~m}, 8 \mathrm{H}$, $\left.\gamma-\mathrm{CH}_{2}\right), 0.95\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=7.13 \mathrm{~Hz},-\mathrm{CH} 3\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.16,140.42$, 135.40, 131.89, 128.27, 125.39, 123.78, 111.49, 100.15, 50.77, 29.42, 20.32, 14.01.

Compounds 4a-e:

$4 a$

4b

4c

4d

$4 e$

The compounds 4b-d have been previously reported and 5a is commercially available.
Compound $4 \mathbf{e}$: $\quad 3,5-\mathrm{Bis}($ trifluoromethyl $)$ iodobenzene $(2.00 \mathrm{~g}, 5.88 \mathrm{mmol})$ was combined with $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(50.0 \mathrm{mg}, 72.1 \mu \mathrm{~mol}), \mathrm{CuI}(50.0 \mathrm{mg}, 333 \mu \mathrm{~mol}), 2.0 \mathrm{~mL}$ THF and 2.0 mL piperidine in a nitrogen-purged Schlenk flask. The mixture was degassed and capped with a septum. trimethylsilylacetylene ($0.635 \mathrm{~g}, 6.47 \mathrm{mmol}$) was added dropwise. The reaction was allowed to stir in a warm water bath for 12 h . The crude reaction mixture was filtered over a silica plug with hexanes. The hexane mixture was reduced and the product was conveniently re-crystallized by sublimation in its own container at ambient temperature providing crystals suitable for crystallography ($1.83 \mathrm{~g}, 83 \%$). IR: 3087.8, 2960.5, 2900.7, 2173.6, 1834.2, 1807.2, 1786.0, $1608.5,1460.0,1409.9,1373.2,1300.8,1249.8,1181.2,1130.2,1107.1,912.3,907.7,896.8,891.1$, 763.8. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87(\mathrm{~s}, 2 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=132.54-131.53\left(\mathrm{q}, \mathrm{J}_{2 \mathrm{C}, \mathrm{F}}=33.8 \mathrm{~Hz}\right), 132.06-132.03\left(\mathrm{q}, \mathrm{J}_{3 \mathrm{C}, \mathrm{F}}=3.0 \mathrm{~Hz}\right)$, , 127.19-119.06 $\left(\mathrm{q}, \mathrm{J}_{1 \mathrm{C}, \mathrm{F}}=272.9 \mathrm{~Hz}\right), 125.66,122.02-121.9\left(\mathrm{q}, \mathrm{J}_{3 \mathrm{C}, \mathrm{F}}=3.76 \mathrm{~Hz}\right), 101.7$, $98.97,0.14$.

Compounds 3a-g:

3a-g were produced by the Sonagashira coupling of either the free alkyne 4a,b or by in-situ deprotection with potassium hydroxide and ethanol as a co-solvent ($\mathbf{4 c} \mathbf{c} \mathbf{e}$). The reaction progress

could be monitored by the development of the fluorescent products which were isolated by precipitating twice into nonsolvents.

Compound 3a: 2a ($236 \mathrm{mg}, 0.442 \mathrm{mmol}$) was combined with $\mathbf{4 b}$ $(175 \mathrm{mg}, 1.11 \mathrm{mmol}),\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(5.0 \mathrm{mg}, 7.1 \mu \mathrm{~mol}), \mathrm{CuI}(5.0$ $\mathrm{mg}, 33 \mu \mathrm{~mol}$) and dissolved in 4.0 mL of piperidine/THF 1:1. The crude reaction mixture was precipitated twice from dichloromethane into hexane. The resulting yellow powder was recrystallized by evaporation of dichloromethane from hexane yielding 213 mg yellow crystals suitable for crystallographic analysis. Yield: 81% MP: 240°. IR: 3037.7, 2960.5, 2356.6, 2204.4, 1801.4, 1631.7, 1596.9, 1498.6, 1406.0, 1365.5, 1265.2, $1101.3,1026.1,956.6,891.1,831.3,752.2$, 690.5. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.99(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.69\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{H}, \mathrm{J}_{3} \mathrm{H}, \mathrm{H}=16.3 \mathrm{~Hz}\right)$, $7.57(\mathrm{~m}, 8 \mathrm{H}), 7.43(\mathrm{~m}, 8 \mathrm{H}), 7.30(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 18 \mathrm{H}, \mathrm{t}-\mathrm{butyl}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=152.16$, $137.58,137.50,131.60,130.76,129.02,128.18,127.06,126.00,125.77,122.63,120.38,65.97$, 87.50, 35.12, 31.46. MS (DEP) $\left(\mathrm{C}_{46} \mathrm{H}_{42}\right): m / z=594$.

Compound 3b: Compound 2b ($250 \mathrm{mg}, 0.466 \mathrm{mmol}$) was combined with $\mathbf{4 b}(184 \mathrm{mg}, 1.17 \mathrm{mmol}),\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(5.0 \mathrm{mg}$, $7.1 \mu \mathrm{~mol}), \mathrm{CuI}(5.0 \mathrm{mg}, 33 \mu \mathrm{~mol})$ and dissolved in 4.0 mL of piperidine/THF 1:1. The crude reaction mixture was precipitated twice from dichloromethane into hexane. The resulting yellow powder was recrystallized by evaporation of dichloromethane from hexane yielding 214 mg yellow crystals suitable for crystallographic analysis. Yield: 77\% MP: 264°. IR: 2960.5, 2868.0, 2358.8, 2208.3, 1593.1, 1506.3, 1461.9, 1363.6, 1267.1, 1217.0, 1103.2, 1016.4, 962.4, 866.0, 833.2, 800.4. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=8.61\left(\mathrm{bs}\right.$, pyridine-H), $7.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.87\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=16.5 \mathrm{~Hz}\right), 7.54(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}-$ $\mathrm{H}, 8.51), 7.44(\mathrm{~m}, 8 \mathrm{H}), 7.22\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=16.5 \mathrm{~Hz}\right), 1.34\left(\mathrm{~s}, 18 \mathrm{H}\right.$, t-butyl). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta=152.34,150.22,144.23,136.76,131.31,129.85,129.18,128.06,125.62,122.90$, $121.20,119.62,96.55,86.53,34.88,31.14 . \mathrm{MS}(\mathrm{DEP})\left(\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{~N}_{2}\right): \mathrm{m} / \mathrm{z}=596$.

Compound 3c: Compound 2d ($500 \mathrm{mg}, 0.842 \mathrm{mmol}$) was combined with 4c ($518 \mathrm{mg}, 2.53 \mathrm{mmol}$), $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(5.0 \mathrm{mg}$, $7.1 \mu \mathrm{~mol}), \mathrm{CuI}(5.0 \mathrm{mg}, 33 \mu \mathrm{~mol}), \mathrm{KOH}(0.500 \mathrm{~g}, 8.9 \mathrm{mmol}), 2.0$ mL of piperidine, 2.0 mL THF , and 2.0 mL EtOH in a nitrogen purged Schlenk flask. The solution was degassed, capped with a septum and placed in a $50^{\circ} \mathrm{C}$ water bath for 24 h . The solution was reduced then precipitated twice from dichloromethane into methanol. The resulting yellow powder was recrystallized from xylenes yielding 269 mg yellow crystals. Yield: $53 \% \mathrm{MP}: 199^{\circ}$. IR: 2929.7, 1604.7, 1512.1, 1456.2, 1440.7, 1419.5, 1292.2, 1253.6, 1174.6, 1107.1, 1031.8, 958.6, 852.5, 831.3. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.83$ (s, 2 H , Ar-H), $7.54(\mathrm{~m}, 10 \mathrm{H}), 7.84(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.22\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=16.2 \mathrm{~Hz}\right), 6.93(\mathrm{~m}, 8 \mathrm{H})$, $3.84\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right), 3.83\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=160.04,159.75,137.31,133.29$,
$130.49,130.00,128.59,128.26,123.98,122.25,115.65,114.46,114.38,95.53,87.15,55.57 . \mathrm{MS}$ (DEP) $\left(\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{O}_{4}\right): m / z=602$.

Compound 3d: Compound 2d ($670 \mathrm{mg}, 1.00 \mathrm{mmol}$) was combined with $4 d(606 \mathrm{mg}, 2.50 \mathrm{mmol}),\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(5.0 \mathrm{mg}, 7.1 \mu \mathrm{~mol})$, $\mathrm{CuI}(5.0 \mathrm{mg}, 33 \mu \mathrm{~mol})$, $\mathrm{KOH}(0.500 \mathrm{~g}, 8.9 \mathrm{mmol}), 2.0 \mathrm{~mL}$ of piperidine, 2.0 mL THF, and 2.0 mL EtOH in a nitrogen purged Schlenk flask. The solution was degassed, capped with a septum and placed in a $50^{\circ} \mathrm{C}$ water bath for 24 h . The solution was reduced then precipitated twice from dichloromethane into hexane. The resulting green powder was recrystallized from xylenes yielding 475 mg greenish crystals. Yield: 63\%. MP: 218-220 ${ }^{\circ}$. IR: 2358.8, 2341.4, 1610.5, 1569.9, 1496.7, 1415.7, 1334.6, 1313.4, 1259.4, 1182.3, 1132.1, 1107.1, 1070.4, 962.4, 867.9, 823.5, 765.7. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.94(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.77(\mathrm{~m}$, $14 \mathrm{H}), 7.50\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}_{3} \mathrm{H}, \mathrm{H}=7.7 \mathrm{~Hz}\right), 7.28\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{H}, \mathrm{J}_{3}\right.$ ${ }_{\mathrm{H}, \mathrm{H}}=16.5 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR (D-TCE, $80^{\circ} \mathrm{C}$): $\delta=140.44,137.59$, $134.04,131.45,131.15$ (m), 129.98, 129.74 (m), 129.53, 128.44, 127.66, 126.92, 125.94, 125.47, 125.14, 124.69, 122.96, 122.61, 120.88, 92.69, 91.88. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta=22.76,22.09$. MS (DEP) $\left(\mathrm{C}_{42} \mathrm{H}_{22} \mathrm{~F}_{12}\right): m / z=754$.

Compound $3 \mathbf{e}$: Compound $\mathbf{2 e}(330 \mathrm{mg}, 0.418 \mathrm{mmol})$ was combined with phenylacetylene $4 \mathbf{4 a}(107 \mathrm{mg}, 1.05 \mathrm{mmol}),\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(5.0$ $\mathrm{mg}, 7.1 \mu \mathrm{~mol}), \mathrm{CuI}(5.0 \mathrm{mg}, 33 \mu \mathrm{~mol})$ and dissolved in 4.0 mL of piperidine/THF 1:1. The crude reaction mixture was precipitated twice from dichloromethane into methanol. The resulting orange powder was recrystallized from methanol yielding 280 mg orange crystals. Yield: 91\%. MP: 164-168 ${ }^{\circ}$. IR: 3033.8, 2929.7, 1795.6, $1600.8,1521.7,1461.9,1400.2,1367.4,1257.5,1220.9,1147.9$, 1109.0, 925.8, 804.3, 752.2, 688.5. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=7.84(\mathrm{~s}, 2 \mathrm{H}, ~ A r-H), 7.84\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz}\right), 7.44(\mathrm{~m}$, $12 \mathrm{H}), 7.19\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=16.5 \mathrm{~Hz}\right), 6.64\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}_{3}\right.$ $\left.{ }_{\mathrm{H}, \mathrm{H}}=8.8 \mathrm{~Hz}\right), 3.31\left(\mathrm{t}, 8 \mathrm{H}, \alpha-\mathrm{C}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=7.41 \mathrm{~Hz}\right), 1.63(\mathrm{~m}, 8 \mathrm{H}, \beta-\mathrm{C}-\mathrm{H}), 1.39(\mathrm{~m}, 8 \mathrm{H}, \gamma-\mathrm{C}-\mathrm{H}$,$) ,$ $0.97\left(\mathrm{t}, 12 \mathrm{H},-\mathrm{CH}_{3}, \mathrm{~J}_{3 \mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=147.97$,
 137.29, 131.57, 130.38, 128.38, 128.25, 128.09, 128.07, 124.49, 123.48, $121.41,120.50,111.59,94.78,88.51,50.74,29.46,20.32,14.00$. MS (DEP) $\left(\mathrm{C}_{54} \mathrm{H}_{60} \mathrm{~N}_{2}\right): m / z=736$.

Compound 3f: Compound 2 e ($250 \mathrm{mg}, 0.317 \mathrm{mmol}$) was combined with $4 \mathbf{d}(192 \mathrm{mg}, 0.792 \mathrm{mmol}),\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(5.0 \mathrm{mg}, 7.1 \mu \mathrm{~mol}), \mathrm{CuI}$ $(5.0 \mathrm{mg}, 33 \mu \mathrm{~mol}), \mathrm{KOH}(0.500 \mathrm{~g}, 8.9 \mathrm{mmol}), 2.0 \mathrm{~mL}$ of piperidine, 2.0 mL THF, and 2.0 mL EtOH in a nitrogen purged Schlenk flask. The solution was degassed, capped with a septum and placed in a $50^{\circ} \mathrm{C}$ water bath for 24 h . The crude reaction mixture was dissolved in dichloromethane and washed three times with water. The solution was reduced then precipitated twice from dichloromethane into methanol.

The resulting orange powder was recrystallized from methanol yielding 186 mg orange crystals. Yield: 67% MP: 182°. IR: 3030.0, 2954.7, 2869.9, 2208.3, 1600.8, 1521.7, 1469.7, 1398.3, 1369.4, 1315.4, 1286.4, 1259.4, 1220.9, 1174.6, 1136.0, 1109.0, 1055.0, 1031.8, 962.4, 806.2, 765.7. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.86(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.77\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}_{3} \mathrm{H}, \mathrm{H}=7.69 \mathrm{~Hz}\right.$), $7.73\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=7.69 \mathrm{~Hz}\right), 7.58\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=7.68 \mathrm{~Hz}\right), 7.45(\mathrm{~m}, 8 \mathrm{H}), 7.17(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=16.47 \mathrm{~Hz}\right), 6.64\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=8.78 \mathrm{~Hz}\right), 3.31\left(\mathrm{t}, 8 \mathrm{H}, \alpha-\mathrm{C}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=\right.$ $6.59 \mathrm{~Hz}), \quad 1.60(\mathrm{~m}, 8 \mathrm{H}, \beta-\mathrm{C}-\mathrm{H}), \quad 1.39(\mathrm{~m}, 8 \mathrm{H}, \gamma-\mathrm{C}-\mathrm{H}),, \quad 0.97\left(\mathrm{t}, 12 \mathrm{H},-\mathrm{CH}_{3}, \mathrm{~J}_{3 \mathrm{H}, \mathrm{H}}=7.14 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta=148.32,137.94,134.69,131.71,131.60,131.19,131.11,128.64,128.52$, $128.21,126.18,126.11,124.66,121.95,121.68,120.32,111.81,94.29,90.85,51.00,29.74,20.59$, 14.25. MS (DEP) $\left(\mathrm{C}_{56} \mathrm{H}_{58} \mathrm{~F}_{6} \mathrm{~N}_{2}\right): m / z=872$.

Compound 3g: Compound $2 \mathrm{e}(182 \mathrm{mg}, 0.25 \mathrm{mmol})$ was combined with $4 \mathbf{e}(177 \mathrm{mg}, 0.624 \mathrm{mmol}),\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(5.0$ $\mathrm{mg}, 7.1 \mu \mathrm{~mol})$, CuI ($5.0 \mathrm{mg}, 33 \mu \mathrm{~mol}$), KOH ($0.500 \mathrm{~g}, 8.9$ mmol), 2.0 mL of piperidine, 2.0 mL THF, and 2.0 mL EtOH in a nitrogen purged Schlenk flask. The solution was degassed, capped with a septum and placed in a $50^{\circ} \mathrm{C}$ water bath for 24 h . The crude reaction mixture was dissolved in dichloromethane and washed three times with water. The solution was reduced then precipitated twice from dichloromethane into methanol. The resulting orange powder was recrystallized from methanol yielding 192 mg orange crystals. Yield: 76% MP: 191°. IR: 3039.6, 2960.5, 2931.6, 2864.1, 2208.3, 1600.8, 1521.7, 1373.2, 1286.4, 1182.3, 1137.9, 956.6, 893.9, 804.3, 684.7. ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.02(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.86(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.84(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.43\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{J}_{3}\right.$ $\left.{ }_{\mathrm{H}, \mathrm{H}}=8.78 \mathrm{~Hz}\right), 7.37\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=16.2 \mathrm{~Hz}\right), 7.19\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}=\mathrm{C}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=16.3 \mathrm{~Hz}\right)$, $6.65\left(\mathrm{~d}, 4 \mathrm{H}, \operatorname{Ar}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=8.51 \mathrm{~Hz}\right), 3.32\left(\mathrm{t}, 8 \mathrm{H}, \alpha-\mathrm{C}-\mathrm{H}, \mathrm{J}_{3 \mathrm{H}, \mathrm{H}}=6.59 \mathrm{~Hz}\right), 1.58(\mathrm{~m}, 8 \mathrm{H}, \beta-\mathrm{C}-\mathrm{H})$, $1.39(\mathrm{~m}, 8 \mathrm{H}, \gamma-\mathrm{C}-\mathrm{H}),, \quad 0.97\left(\mathrm{t}, 12 \mathrm{H},-\mathrm{CH}_{3}, \mathrm{~J}_{3 \mathrm{H}, \mathrm{H}}=7.14 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=148.29$, 137.80, 132.53-131.53 (m), 131.30, 131.21, 128.22, 128.13, 127.06-118.9 (m), 125.70, 123.98, 121.62, 120.82, 119.66, 111.59, 92.07, 91.94. MS (DEP) $\left(\mathrm{C}_{56} \mathrm{H}_{56} \mathrm{~F}_{12} \mathrm{~N}_{2}\right): \mathrm{m} / \mathrm{z}=1008$.

UV-vis/Fluorescence:

$3 a$	3b	3c	3d	3 e	3 F	3 g

Chloroform

Ab	$331,365 \mathrm{sh}$	330	$339,374 \mathrm{sh}$	$330,363 \mathrm{sh}$	339,439	342,444	345,458
Em	420,442	$446,526 \mathrm{sh}$	432,454	$419,434 \mathrm{sh}$	514	543	563
ϕ	0.83	0.28	0.88	0.92	0.16	0.20	0.14

Hexane

Ab	$326,352 \mathrm{sh}$	$324,348 \mathrm{sh}$	$334,376 \mathrm{sh}$	-	332,422	344,416	346,420
Em	414,432	$424,444 \mathrm{sh}$	420,442	-	472,498	$502,526 \mathrm{sh}$	524
ϕ	0.78	0.45	0.78	-	0.94	0.70	0.53

Cyclic Voltametry:

Electrochemical experiments were carried out with CH Instruments model 660 electrochemical workstation. Cyclic voltammograms (CV) were obtained by using a conventional three-electrode system. A platinum foil was used as the counter electrode. A platinum disk electrode ($\phi=1.2 \mathrm{~mm}$) from Bioanalytical Systems serves as a working electrode. Reference electrode $\mathbf{A}, \mathrm{Ag} / 0.1 \mathrm{M}$ AgNO_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was separated from the test by a fritted bridge containing the background electrolyte ($0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in THF). The reference electrode was calibrated before each experiment with the ferrocene/ferrocenium ($\mathrm{Fc} / \mathrm{Fc}^{+}$) redox system. The $\mathrm{E}_{1 / 2}$ of 5 mM of $\mathrm{Fc} / \mathrm{Fc}^{+}$in $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was 0.89 V and in $0.1 \mathrm{M} 0.1 \mathrm{M} \mathrm{Bu} 4 \mathrm{NPF}_{6}$ in THF 0.141 V . The standard redox potential of the $\mathrm{Fc} / \mathrm{Fc}^{+}$system has been determined to be 0.190 V [Bard, AJ., Faulkner LR. Electrochemical Methods; John Wiley \& Sons: New York 1980 p.701].. Therefore, the potential of our reference electrode \mathbf{A} was 0.289 V and 0.331 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and THF respectively vs. S.H.E. For additional experiments (oxidation of 3d), the working and reference electrodes (reference electrode \mathbf{B}) were a platinum wires with a platinum foil counter electrode. The reference electrode was calibrated before each experiment with the ferrocene/ferrocenium $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$redox system. The $\mathrm{E}_{1 / 2}$ of 5 mM of $\mathrm{Fc} / \mathrm{Fc}^{+}$in $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was 0.205 V . Therefore, the potential of our reference electrode \mathbf{B} was 0.395 V vs. S.H.E. All solutions were purged prior to electrochemical measurements using nitrogen gas. All solvents were dried with molecular sieves ($3 \AA$). All the salts were used as received from Aldrich.

Table: Reduction and oxidation potentials of 3a-g

$3 a$	$3 b$	$3 c$	$3 d$	3 e	3 f	3 g

Reduction:

onset	-0.80	-1.44	-0.83	-1.46	-1.8^{*}	-1.8^{*}	-1.8^{*}
$\mathrm{E}_{1 / 2}$	-1.02	-1.57	-1.12	-1.57	-	-	-
peak	-1.26	-1.67	-1.15	-1.65	-	-	-

Oxidation:

onset	1.21	1.40	1.07	1.45	$0.41,1.47$	$0.47,1.45$	$0.50,1.54$
$\mathrm{E}_{1 / 2}$	1.32	1.51	1.12	1.52	0.53	0.53	0.57
peak	1.42	1.68	1.19	1.61	0.61	0.62	0.66

* only onsets of reduction were observed.

Oxidation

Oxidation

Potential

Reduction

Potential

Oxidation

Potential
$3 f$
Oxidation

Current

3g

