Cross Metathesis Functionalization of Polyolefins

Robert T. Mathers and Geoffrey W. Coates*

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York, 14853-1301, USA. E-mail: gc39@cornell.edu; Tel: +1 607-255-5447.

SUPPORTING INFORMATION

Characterization

All air and moisture sensitive chemistry was carried out in a Braun Labmaster drybox or using standard Schlenk line techniques. ¹H NMR spectra of polymers were recorded on a Varian Inova 500 MHz spectrometer and referenced to non-deuterated solvent shifts. Polymers that were insoluble at room temperature were recorded on a Varian Inova 500 MHz spectrometer at 130° C in 1,1,2,2-tetrachloroethane- d_2 . The molecular weights (M_n and M_w) and polydispersity indexes (M_w/M_n) were measured by a Waters Alliance GPCV 2000 size exclusion chromatograph (SEC). The SEC columns set (4 Waters HT 6E and 1 Waters HT 2) was eluted with 1,2,4-trichlorobenzene containing 0.01 wt % di-*tert*-butylhydroxytoluene (BHT) at 1.0 mL/min at 140° C. The molecular weights and polydispersity indexes were measured relative to a polystyrene calibration curve. DSC analyses were performed on a TA Instruments Q1000 instrument equipped with a liquid nitrogen cooling source and an automated sampler. Typical DSC experiments were made in crimped aluminum pans under nitrogen with a heating rate of 10° C/min from –50 to +200° C. The reported DSC data from the second heating run was processed with the TA Q Series software.

Materials

The solvents were dried on solvent columns containing molecular sieves, alumina and activated copper. Propylene (Matheson, Polymer Grade) was purified by a column of molecular sieves and alumina. Methylaluminoxane (PMAO-IP, 12.9 wt. % Al in toluene, Akzo Nobel) was dried under vacuum at 60° C for 24 h. 1,5-Hexadiene (Aldrich) was stirred over CaH₂ for 2 days, degassed with periodic freeze-pump-thaw cycles and distilled onto molecular sieves. Polymers were made as reported in Hustad, P. D.; Coates, G. W., *J. Am. Chem. Soc.*, **2002**, *124*, 11578. Monomers for cross metathesis reactions were commercially available and were used as received.

Cross metathesis of poly(ethylene-*co*-propylene)-*block*-poly(MCP-*co*-VTM) with 2,2,3,3,4,4,4-heptafluorobutyl acrylate

The polymer (50 mg, 0.12 mmol VTM) was dissolved in chlorobenzene (2 mL), 1,1,2trichloro-1,2,2-trifluoroethane (5 mL) and 2,2,3,3,4,4,4-heptafluorobutyl acrylate (10 equiv, 1.2 mmol, 0.22 mL) in a 50 mL round bottom flask equipped with a Straus adapter and a condenser. The solution was degassed with several freeze-pump-thaw cycles and put in a sand bath at 55°C. The catalyst solution (0.0024 mmol, 2.0 mg of **2** in 0.5 mL chlorobenzene) was added by syringe. A slight dynamic vacuum was applied. After 4 hours, the flask was allowed to cool to room temperature and the polymer was precipitated into methanol. The polymer was filtered, washed with excess methanol and dried under vacuum.

Cross metathesis of poly(*syndio*-propylene)-*block*-poly(propylene-*co*-MCP-*co*-VTM) with 4-pentene-1-ol

The polymer (100 mg, 0.02 mmol VTM) was dissolved with 2 mL chlorobenzene, 2 mL of methylene chloride and 5-hydroxy-1-pentene (10 equivalents, 0.2 mmol, 0.024 mL) in a 50 mL round bottom flask equipped with a Straus adapter and a condenser. The solution was degassed with several freeze-pump-thaw cycles and put in a sand bath at 55°C. The catalyst was added by syringe (0.02 equivalents, 0.0004 mmol, 0.34 mg of **2** in 1 mL of chlorobenzene). The reaction was stirred under a slight dynamic vacuum. After 1 hour, the polymer was precipitated into methanol, filtered and dried under vacuum.

Cross metathesis of poly(MCP-co-VTM) with ethyl acrylate

The polymer (50 mg, 0.2 mmol VTM) was dissolved with 2 mL chlorobenzene and 5 mL of methylene chloride in a 50 mL round bottom flask with a Straus adapter. Ethyl acrylate (10 equivalents, 2.0 mmol, 0.22 mL) and a solution of **2** (0.02 equivalents, 0.004 mmol, 3.4 mg in 0.5 mL of chlorobenzene) were added. The reaction was stirred for 7 hours at 55°C under a slight dynamic vacuum. The flask was cooled to room temperature and the polymer was precipitated into methanol. The polymer was filtered, washed with excess methanol and dried under vacuum.