Glyoxal Bis-hydrazones: A New Family of Nitrogen Ligands for Asymmetric Catalysis
 José M. Lassaletta, ${ }^{*}$ Manuel Alcarazo, and Rosario Fernández
 Instituto de Investigaciones Químicas (CSIC-USe). Americo Vespuccio s/n, Isla de la Cartuja, E41092 Seville (Spain).

Electronic Supplementary Information (ESI)

General Experimental Procedures: Melting points were determined using a metal block and are uncorrected. Optical rotations were measured at room temperature. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra were obtained in CDCl_{3} as the solvent with either TMS $\left(0.00 \mathrm{ppm}{ }^{1} \mathrm{H}\right.$, $0.00 \mathrm{ppm}{ }^{13} \mathrm{C}$) or CDCl 3 ($7.26 \mathrm{ppm}, 77.00 \mathrm{ppm} \mathrm{13C}$) as an internal reference. FT-IR spectra were recorded for KBr pellets or films. EI-mass spectra were recorded at 70 eV , using an ionizing current of $100 \square \mathrm{~A}$, an accelerating voltage of 4 kV , and a resolution of 1000 or 10000 (10% valley definition). The reactions were monitored by TLC. Purification of the products was carried out by chromatography (silica gel). The light petroleum ether used had boiling range $40-65^{\circ} \mathrm{C}$.
(2S, 5S)-1-amino-2,5-diphenylpyrrolidine 7: To a stirred, cooled (-20 $\left.{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{MsCl}(8 \mathrm{~mL}, 106 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added dropwise a solution of ($1 R, 4 R$)-1,4-diphenyl-1,4-butanediol ${ }^{1}(10 \mathrm{~g}, 41.2 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(7.4 \mathrm{~mL}, 124 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. After stirring for 90 min . at $-20{ }^{\circ} \mathrm{C}$, satd. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added, the organic layer was concentrated to a volume of 40 mL , diluted with AcOEt

[^0]$(150 \mathrm{~mL})$, and washed with a $1: 2: 1$ mixture of water, brine and satd. $\mathrm{NaHCO}_{3}(4 \square$ $\mathrm{mL})$ and satd. $\mathrm{NaHCO}_{3}(2 \square 100 \mathrm{~mL})$. The organic layer was concentrated to a volume of 30 mL , cooled to $0^{\circ} \mathrm{C}$, and n-hexane (200 mL) was added dropwise to yield the product as white crystals. This material was suspended in isopropanol (40 mL), and hydrazine monohydrate ($840 \mathrm{mmol}, 20$ eq.) was then added. After vigorous stirring for 4 days at $4{ }^{\circ} \mathrm{C}$, the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ and washed with satd. $\mathrm{NaHCO}_{3}(2 \square 50 \mathrm{~mL})$ and brine (50 mL). The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to yield $(R, R)-1$ -amino-2,5diphenylpirrolidine as an oil (92\%). $[\square]^{20}{ }_{\mathrm{D}}+122.5\left(c \quad 0.36, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\square 2.02-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.52(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{dd}, J=5.7,4.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.27-7.38(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75MHz, CDCl_{3}): $\square 30.8,69.6,127.7,128.7,128.8$, 141,6. Anal Calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2}$: C, 80.63; H, 7.61. Found: C, 80.78; H, 7.59.
(2S, 6S)-1-amino-2,6-diphenylpyperidine 8: Following the method described above for hydrazine 7, but starting from ($1 R, 5 R$)-1,5-diphenyl-1,5-pentanediol, ${ }^{1}$ hydrazine $\mathbf{8}$ was obtained in 91% yield: []$]_{D}{ }^{20}+74.5\left(c \quad 0.94, \mathrm{CHCl}_{3}\right)$.); ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): 1.86-1.96 (m, 2H), 2.02-2.12 (m, 2H), 2.83 (br. s, 2H), 4.23 (dd, $J=6.4,4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.22-7.48(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{3} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): \square 19.3, 30.4, 65.6, 127.0, 128.4, 128.5, 142.8. Anal Calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2}$: C, 80.91; H, 7.82; $\mathrm{N}, 11.07$. Found: C, C, 80.91; H, 7.99, N, 11.10.

Glyoxal bis-hydrazone 9

A solution of hydrazine $7(19.4 \mathrm{mmol})$ and dry glyoxal ${ }^{2}$ (9.24 mmol) was stirred in methanol (6 mL) at room temperature. After 1 hour, the mixture was filtered to afford 9 (54%) as a white powder. Flash chromatography ($8: 1 n$-hexane/EtOAc $+1 \% \mathrm{Et}_{3} \mathrm{~N}$) of the mother liquors afforded an additional amount of product (14\%). m.p. $193-194{ }^{\circ} \mathrm{C}$; $[\square]_{\mathrm{D}}{ }^{20}-392.8\left(c \quad 1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $]$ 1.63-1.71 (m, 4H), 2.40$2.51(\mathrm{~m}, 4 \mathrm{H}), 4.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 7.11-7.31(\mathrm{~m}, 20 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \square 31.0,64.8,126.1,126.7,128.4,133.3,143,7$. Anal calcd. for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{4}$: C, 81.89; H, 6.87; N, 11.24; found: C, 81.68 H, 6.67; N, 11.18.

Glyoxal bis-hydrazone 10

Following the procedure described above for bis-hydrazone 9, but starting from hydrazine 8, bis-hydrazone 10 (52\%) was obtained as a white powder: M.p. 196-197 ${ }^{\circ} \mathrm{C} ;[\square]_{\mathrm{D}}{ }^{20}-251.1\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $]$ 1.45-1.51 (m, 4H), $1.91-2.03(\mathrm{~m}, 8 \mathrm{H}), 4.83(\mathrm{t}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 7.16-7.28(\mathrm{~m}, 20 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) \square 30.6, 60.7, 136.2, 126.3, 127.6, 128.1, 142,1. Anal calcd. for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{4}$: C, 82.09; H, 7.27; N, 10.64; found: C, $81.99 \mathrm{H}, 7.32$; N, 10.82.

General procedure for Diels-Alder cycloadditions:. A mixture $\mathrm{Cu}(\mathrm{OTf})_{2}(0.04$ $\mathrm{mmol}), \mathbf{9}$ or ent- $\mathbf{9}(0.044 \mathrm{mmol}), \mathbf{1}(0.44 \mathrm{mmol})$, and activated $4 \AA$ molecular sieves (15 mg) was heated in vacuo at $50^{\circ} \mathrm{C}$ for 20 min . The mixture was cooled to rt , solved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$, and cooled (Table 1). Freshly distilled diene 2, 11-14 (2.20 mmol) was added and the mixture was stirred until consumption of $\mathbf{1}$ (tlc). Column

[^1]chromatography (2:1n-hexane/EtOAc) afforded recovered 9 (75-80\%) and cycloadduct 6, 15-18. Compounds $(R)-6,{ }^{3}(R)-15,{ }^{4} 16,{ }^{5}$ and 18^{6} were characterized and identified by comparison with literature data. Characterization data for compound 17: 92% ee by HPLC (Chiralpak AD, 2-propanol:hexane 10:90, $1.0 \mathrm{~mL} / \mathrm{min}, 25^{\circ} \mathrm{C}$), S, S isomer 9.62 \min , R, R isomer $\left.10.85 \mathrm{~min} ;[\square]_{\mathrm{D}}{ }^{25}+51.0\left(c 1.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\right]$ $4.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.0(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.29-1.81(\mathrm{~m}, 6 \mathrm{H})$, $1.59(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\square 176,9,153.5,125.6,124.0,62.2,43.1,39.3$, 33.7, 31.4, 26.5, 19.3, 19.1. HRMS m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}$ 223.1208, found 223.1210.

[^2]
[^0]: ${ }^{1}$ Aldous, D. J.; Dutton, W. M.; Steel, P. G. Tetrahedron: Asymmetry 2000, 11, 2455.

[^1]: ${ }^{2}$ G. Sheikhnejad, A. Brank, J. K. Christman, A. Goddard, E. Alvarez, H. Ford, Jr., V. E. Marquez, C. J. Marasco, J. R. Sufrin, M. O'Gara, X. Cheng J. Mol. Biol. 1999, 285, 2021.

[^2]: ${ }^{3}$ Evans, D. A.; Miller, S. J.; Lectka, T.; von Matt, P. J. Am. Chem. Soc. 1999, 121, 7559.
 ${ }^{4}$ Owens, T. D.; Hollander, F. J.; Oliver, A. G.; Ellman J. A. J. Am. Chem. Soc. 2001, 123, 1539.
 ${ }^{5}$ F. Narasaka, N. Iwasawa, M. Inoue, T. Yamada, M. Nakashima, J. Sugimori J. Am. Chem. Soc. 1989, 111, 5340.
 ${ }^{6}$ Evans, D. A.; Barnes, D. M.; Johnson, J. S.; Lectka, T.; von Matt, P.; Miller, S. J.; Murry, J. A.; Norcross, R. D..; Shaughnessy, E. A.; Campos, K. R. J. Am. Chem. Soc. 1999, 121, 7559.

