Solvent templated synthesis of metal-organic frameworks: structural characterisation and properties of the 3D network isomers $\left\{[\mathrm{Mn}(\mathrm{dcbp})]^{1 / 2 / 2} \mathbf{D M F}\right\}_{n}$ and $\{[\mathrm{Mn}(\mathrm{dcbp})] \cdot \mathbf{2 H} \mathbf{H} \mathbf{O}\}_{n}$

Eithne Tynan, Paul Jensen, Paul E. Kruger* and Anthea C. Lees Department of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
E-mail: Paul.Kruger@tcd.ie

Electronic Supplementary Information

Contents:

Synthesis of $\mathbf{1}$ and $\mathbf{2}$
Figure ESI 1: Molecular structure and atomic numbering scheme for $\mathbf{2}$ and 2a and schematic diagram showing the distortion of the dcbp ligand in $\mathbf{1 , 2}$ and 2 a .

Figure ESI 2: bis-Carboxylato chains found in $\mathbf{1}$ and $\mathbf{2}$.
Figure ESI 3: Packing diagrams showing how the 3D networks in $\mathbf{1}$ and $\mathbf{2}$ differ.
Figure ESI 4: Packing diagrams of $\mathbf{1}$ showing the nature of the 3D network and additional views of its porous structure.

Figure ESI 5: Packing diagrams of $\mathbf{2}$ and 2a showing the nature of the 3D network and additional views of their porous structures.

Figure ESI 6: TGA traces for $\mathbf{1}$ and 2.

Synthesis of $\left\{\left[\operatorname{Mn}\left(4,4^{\prime}-\text { dcbp }\right)\right]^{1 ⁄ 2 / 2} \text { DMF }\right\}_{\mathrm{n}}(1)$.

$\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(56 \mathrm{mg}, 0.285 \mathrm{mmol})$ and $4,4{ }^{\prime}-\mathrm{H}_{2} \mathrm{dcbp}(140 \mathrm{mg}, 0.57 \mathrm{mmol})$ were placed in a 23 ml Teflon ${ }^{\circledR}$-lined digestion bomb with $2 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and 2 ml DMF. The bomb was sealed, placed in an oven and heated to $200{ }^{\circ} \mathrm{C}$ for 16 hrs and then very slowly cooled to room temperature ($3{ }^{\circ} \mathrm{C} / \mathrm{hr}$). Yellow plates, suitable for a single crystal diffraction study, were obtained directly in 80% yield.

The crystals are air stable and insoluble in water and common organic solvents.
IR (KBr): 1673(s), 1600(vs), 1558(s), 1427(m), 1397(s, sh), 1380(vs), 1289(w), 1256(w), 1233(w), 1141(w), 1089(w), 1011(w), 925(w), 905(w), 883(w), 786(m), 687(s), 571(w), 538(w), $501(\mathrm{w}) \mathrm{cm}^{-1}$.
$\mu_{\mathrm{B}}(300 \mathrm{~K})=5.80 \mathrm{~B} . \mathrm{M}$.
Found: C 48.24; H 2.64; N 10.29\%. Required for $\mathrm{Mn}_{2} \mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{9}$: C 48.59, H 2.87, N 10.49.

Synthesis of $\left\{\left[\mathbf{M n}\left(4,4^{\prime}-\mathrm{dcbp}\right)\right] \cdot \mathbf{2 H} \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$ (2).

$\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(56 \mathrm{mg}, 0.285 \mathrm{mmol})$ and $4,4{ }^{\prime}-\mathrm{H}_{2} \mathrm{dcbp}(140 \mathrm{mg}, 0.57 \mathrm{mmol})$ were placed in a 23 ml Teflon ${ }^{\circledR}$-lined digestion bomb with $4 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$. The bomb was sealed, placed in an oven and heated to $200{ }^{\circ} \mathrm{C}$ for 16 hrs and then very slowly cooled to room temperature $\left(3^{\circ} \mathrm{C} / \mathrm{hr}\right)$. Pale yellow needles were obtained in 74% yield.

The yellow crystals are air stable and insoluble in common organic solvents.
IR (KBr): 3550(m, br), 3391 (w, br), 3230(w, br), 1600(vs), 1550(s), 1427(s, sh), 1408 (s, sh), 1383(vs), 1334(m, sh), 1296(w), 1228(w), 1151(w), 1113(w), 1010(w), 916(w), 863 (w), $791(\mathrm{~m}), 690(\mathrm{vs}), 597(\mathrm{w}), 437(\mathrm{w}) \mathrm{cm}^{-1}$.

Found: C 42.94, H 1.68, N 8.27%. Required for $\mathrm{MnC}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{6}$: C 43.26, H 3.03, N 8.41\%. $\mu_{\mathrm{B}}(300 \mathrm{~K})=5.70 \mathrm{~B} . \mathrm{M}$.

Figure ESI 1:

Molecular structure and atomic numbering scheme for 2 (left) and 2a (right). Thermal ellipsoids are drawn to 50% probability level. Hydrogen atoms (and water for 2) omitted for clarity. (N.B., data were collected at 153 K for $\mathbf{2}$ and 343 K for 2a.)

Note how the dcbp ligand is only slightly distorted across the central $\mathrm{C} 1-\mathrm{Cla}$ bond in $\mathbf{2}$ and 2a $\left[\right.$ i.e. buckling across $\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 1 \mathrm{a}, 176.4^{\circ}(\mathbf{2})$ and $176.8^{\circ}(\mathbf{2 a})$] compared with $\mathbf{1}$, which is bent across C5-C6 i.e. C2-C5-C6 (173.6 $)$ and C9-C6-C5 (171.6 $)$. See below for a schematic illustration of this difference.

Bending of dcbp in $\mathbf{1}$ across C5-C6

Buckling of dcbp in 2 and (2a) across C1-C1a

Figure ESI 2:

bis-Carboxylato bridged manganese chains in (a) $\mathbf{1}$ and (b) 2. The black carbons are oriented in the same direction in the two chains, whereas the green carbons in $\mathbf{1}$ are pointing in a different direction to those in $\mathbf{2}$, thus resulting in a different orientation for the 4,4 -dcbp ligands and hence different linking of the chains in the two structures.

Figure ESI 3:

Packing diagrams of the networks in 1 (left, viewed down -110) and 2 (right, viewed down the b-axis) showing the relationship between the bis-carboxylato chains and demonstrating how the networks differ. Note how in $\mathbf{1}$ the chains run down (110) and (-110) and subtend an angle of $c a .66^{\circ}$ to each other, whereas in $\mathbf{2}$ they run parallel with each other and along the c axis. (see ESI Fig 4 and $\mathbf{5}$ for further packing diagrams).

Figure ESI 4: Packing diagrams of 1 viewed down: a, c, and 110, respectively.

Figure ESI 5: Packing diagrams of 2 (top) and 2a (bottom) viewed down: a, and 101, respectively. Note the change in the torsion angles between the pyridyl rings on going from 2 to $\mathbf{2 a}$.

\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2004

Figure ESI 6: TGA traces for $\mathbf{1}$ and $\mathbf{2}$ (heating rate $c a .10^{\circ} \mathrm{C} / \mathrm{min}$).

