Supplementary information

Total synthesis of (+)-Belactosin A

Alan Armstrong* and James N. Scutt

All compounds 4-7 were prepared as previously described in reference 5 b, from their enantiomeric precursors (i.e. 5 synthesised from (R)-glycidol benzyl ether etc).

(2S, $1^{\prime} R, 2^{\prime} S$)- (N-(bis-boc)- N-(diphenylmethylene)-3-(2-aminocyclopropyl)) alanine tert-butyl ester

8

Prepared using $O(9)$-allyl- N-(9-anthracenylmethyl)-cinchonidinium bromide catalyst, as described in ref 3 b . Aminocyclopropyl alanine 8 (67% yield) obtained as colourless needles (m.p. $127-128^{\circ} \mathrm{C}$) after recrystallisation from ether/hexane.
$[\alpha]^{27}{ }_{\mathrm{D}}-24\left(c \quad 1.32, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}(\mathrm{film}) 3059,2978,1787,1735,1368,1285$, $1258,1160,1116,801,783,698 ; \delta_{H}\left(500 \mathrm{MHz}, \mathrm{d}^{8}-\mathrm{tol}\right) 7.82-7.80(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.16-$ $6.98(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.28\left(1 \mathrm{H}\right.$, app $\left.\mathrm{t}, J 6.3, \mathrm{Ph}_{2} \mathrm{C}=\mathrm{NCH}\right), 2.73-2.69(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{C}=\mathrm{NCHCH}_{2}\right), 2.41-2.39(1 \mathrm{H}, \mathrm{m}, \mathrm{CHNBoc} 2), 1.47-1.28\left(29 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{C}=\mathrm{NCHCH}_{2}\right.$, $\left.\mathrm{Boc}_{2}, \mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{CH}\left(\mathrm{CH}_{2}\right) \mathrm{CHNBoc}_{2}\right), 0.85-0.81\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right) \mathrm{CHNBoc}_{2}\right), 0.74(1 \mathrm{H}$, app q, J6.5, $\left.\left(\mathrm{CH}_{2}\right) \mathrm{CHNBoc}_{2}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.0(\mathrm{C}), 169.7(\mathrm{C}), 153.0(\mathrm{C})$, $139.6(\mathrm{C}), 136.7(\mathrm{C}), 132.4(\mathrm{CH}), 130.1(\mathrm{CH}), 130.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH})$, $128.3(\mathrm{CH}), 128.0(\mathrm{CH}), 127.8(\mathrm{CH}), 82.1(\mathrm{C}), 80.9(\mathrm{C}), 65.0(\mathrm{CH}), 36.2\left(\mathrm{CH}_{2}\right), 33.8$ $(\mathrm{CH}), 28.1\left(\mathrm{CH}_{3}\right), 28.0\left(\mathrm{CH}_{3}\right), 20.4(\mathrm{CH}), 16.7\left(\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 565[\mathrm{M}+\mathrm{H}]^{+}$, found : $[\mathrm{M}+\mathrm{H}]^{+}, 565.3304 . \mathrm{C}_{33} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 565.3278$.
(S)-2-Amino-3-((1S,2S)-2-di-(tert-butoxycarbonyl)amino-cyclopropyl)-propionic acid tert-butyl ester

9

To a solution of $\mathbf{8}(0.29 \mathrm{~g}, 0.52 \mathrm{mmol})$, in THF (5.5 ml), was added aqueous citric acid ($2.70 \mathrm{ml}, 15 \%$ solution) dropwise at room temperature. The mixture was then stirred rapidly for 1.5 hours, followed by dilution with ethyl acetate (100 ml), washing with saturated sodium hydrogen carbonate $(100 \mathrm{ml})$, then further extraction with ethyl acetate (100 ml). Organic fractions were combined and dried over magnesium sulfate, followed by removal of solvents in vacuo. The crude mixture was then purified by column chromatography (ethyl acetate eluent), to afford the desired amine $9(0.173 \mathrm{~g}$, 84%) as a clear oil; $[\alpha]^{23}{ }_{\mathrm{D}} 26.8$ (c 1.34, CHCl_{3}); $v_{\max } / \mathrm{cm}^{-1}(\mathrm{film}) 3403,2979,2933$, $1785,1733,1367,1282,1254,1159,1118,852,752 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.54(1 \mathrm{H}$, dd, J 7.3, $\left.5.2, \mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right)\right), 2.41-2.35\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NBoc}_{2}\right), 1.92-1.80(2 \mathrm{H}, \mathrm{m}$, $\left.\left.\left.\mathrm{NH} \mathrm{H}_{2},\left(\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{CHCH}_{2}\right)\right), 1.47-1.28\left(29 \mathrm{H}, \mathrm{m}, \mathrm{Boc}_{2}, \mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu},\left(\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{CHCH}_{2}\right)\right), 1.13-$ $1.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{2}\right) \mathrm{CHNBoc}_{2}\right), 0.85-0.81\left(2 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right) \mathrm{CHNBoc}_{2}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 174.5(\mathrm{C}), 153.2(\mathrm{C}), 82.3(\mathrm{C}), 80.9(\mathrm{C}), 54.6(\mathrm{CH}), 37.6\left(\mathrm{CH}_{2}\right), 33.9(\mathrm{CH})$, $28.0\left(\mathrm{CH}_{3}\right)$, $19.4(\mathrm{CH}), 16.7\left(\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 401[\mathrm{M}+\mathrm{H}]^{+}$, found : $[\mathrm{M}+\mathrm{H}]^{+}$, 401.2654. $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 401.2652$.

N -CBz-L-alanine-(S)-2-Amino-3-((1S,2S)-2-di-(tert-butoxycarbonyl)amino-cyclopropyl)-propionic acid tert-butyl ester

To a mixture of DCC ($33 \mathrm{mg}, 0.16 \mathrm{mmol}$) and HOBt ($43 \mathrm{mg}, 0.32 \mathrm{mmol}$) in DMF (1 ml), was added a solution of amine 9 ($32 \mathrm{mg}, 0.08 \mathrm{mmol}$) and N -CBz-Ala (36 mg ,
$0.16 \mathrm{mmol})$ in DMF (1 ml), followed by further washing with DMF $(0.5 \mathrm{ml})$. The mixture was then stirred at room temperature for 1 hour. DMF was removed at high vacuum (warm water bath), followed by addition of ether (3 ml) and filtration of the urea by-product. The filtrate was then concentrated and purified by column chromatography (2 ether : 1 petrol eluent) to afford the desired amino acid $\mathbf{1 0}$ (50 mg , 100%) as a white foam; $[\alpha]^{20}{ }_{\mathrm{D}} 6.0\left(c 2.0, \mathrm{CHCl}_{3}\right.$); $v_{\max } / \mathrm{cm}^{-1}$ (film) 3314, 2980, 2933, $1726,1674,1368,1274,1257,1160,1121,738 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.75(1 \mathrm{H}, \mathrm{d}, J$ $\left.9.5, \mathrm{NHCH}\left(\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right)\right), 7.36-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 5.73(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{CBzN} H), 5.10(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{PhCH}_{2}\right), 4.77-4.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}\left(\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right)\right), 4.35(1 \mathrm{H}$, app quintet, $J 7.3$, $\mathrm{CBzNHCH}(\mathrm{Me})), 2.48-2.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NBoc}_{2}, \mathrm{NHCH}\left(\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{CH}_{2}\right), 1.51(18 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Boc}_{2}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.18-1.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}\left(\mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{CH}_{2}\right), 0.98-0.84(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{2}\right) \mathrm{CHNBoc}_{2}\right), 0.80-0.72\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right) \mathrm{CHNBoc}_{2}\right), 0.66(1 \mathrm{H}$, app q , $\left.\left(\mathrm{CH}_{2}\right) \mathrm{CHNBoc}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.9(\mathrm{C}), 170.3(\mathrm{C}), 155.6(\mathrm{C}), 153.8(\mathrm{C})$, $136.5(\mathrm{C}), 128.5(\mathrm{CH}), 128.0(\mathrm{CH}), 128.0(\mathrm{CH}), 83.2(\mathrm{C}), 81.7(\mathrm{C}), 66.6\left(\mathrm{CH}_{2}\right), 51.5$ $(\mathrm{CH}), 50.2(\mathrm{CH}), 35.1(\mathrm{CH}), 34.4\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{3}\right), 19.8(\mathrm{CH}), 16.7\left(\mathrm{CH}_{2}\right), 13.7$ $\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 606[\mathrm{M}+\mathrm{H}]^{+}$, found : $[\mathrm{M}+\mathrm{H}]^{+}, 606.3381 . \mathrm{C}_{31} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{9}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 606.3391$.

N-CBz-L-alanine-(S)-2-Amino-3-((1R,2S)-2-amino-cyclopropyl)-propionic acid . TFA

11

To a stirred solution of amino acid $\mathbf{1 0}(200 \mathrm{mg}, 0.33 \mathrm{mmol})$ in dichloromethane $(3.70 \mathrm{ml})$ at 0 ${ }^{\circ} \mathrm{C}$ was added TFA (3.70 ml) dropwise, and the mixture was placed in a fridge (approx $15^{\circ} \mathrm{C}$) for 20 h . Solvents were removed in vacuo, and the mixture was diluted with distilled water (25 ml), and washed with ether (25 ml). Aqueous fractions were concentrated in vacuo, and the residue was then freeze dried to afford the desired amine salt $\mathbf{1 1}(0.137 \mathrm{~g}, 90 \%)$. This material was used directly in the next step without further purification.

(2R,3S)-3-((S)-sec-Butyl)-4-oxo-oxetane-2-carboxylic acid tert-butyl ester

19

To a cooled solution of acid $18(0.69 \mathrm{~g}, 2.71 \mathrm{mmol})$, in THF $(20 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$, was added LiHMDS ($6.54 \mathrm{ml}, 6.54 \mathrm{mmol}, 1.00 \mathrm{M}$ solution in hexanes), dropwise. After stirring at $-78^{\circ} \mathrm{C}$ for 45 min carbon tetrachloride ($0.316 \mathrm{ml}, 3.268 \mathrm{mmol}$) was added dropwise. The mixture was then stirred at $-78^{\circ} \mathrm{C}$ for 30 min , then allowed to warm to room temperature and stir for a further 10 min . Most of the solvent was removed in vacuo followed by addition of ether (20 ml) then 5% aqueous sodium bicarbonate (20 ml) with subsequent rapid stirring for 20 h . The mixture was diluted with ether (150 ml), washed with saturated sodium bicarbonate (2 x 50 ml), then dried over magnesium sulfate and concentrated in vacuo. The crude material was purified by flash column chromatography (3 petrol : 1 ether eluent), affording the desired β lactone 19 ($0.38 \mathrm{~g}, 55 \%$) as a white solid, which was recrystallised (ether/petrol) to afford 19 as white needles (m.p. $44-45{ }^{\circ} \mathrm{C}$); $[\alpha]^{20}{ }_{\mathrm{D}}-8.2$ (c $0.73, \mathrm{CHCl}_{3}$); $v_{\text {max }} / \mathrm{cm}^{-}$ ${ }^{1}$ (film) 2966, 2934, 2879, 1839, 1752, 1703, 1460, 1370, 1238, 1157, 1105, 1010, $930 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.53\left(1 \mathrm{H}, \mathrm{d}, J 4.3,{ }^{\mathrm{t}} \mathrm{BuO}_{2} \mathrm{CCH}\right), 3.58(1 \mathrm{H}, \mathrm{dd}, J 7.8,4.3$, $\left.{ }^{\mathrm{t}} \mathrm{BuO}_{2} \mathrm{CCHCH}\right), 2.05-1.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Et}\right), 1.68-1.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.48$ ($\left.9 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.39-1.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.01\left(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Et}\right), 0.91$ (1 H , app t, J 7.6, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.0\left(\mathrm{CH}_{3}\right), 16.3\left(\mathrm{CH}_{3}\right), 26.8$ $\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{3}\right), 33.5\left(\mathrm{CH}_{2}\right), 62.4(\mathrm{CH}), 69.5(\mathrm{CH}), 83.5(\mathrm{C}), 167.5(\mathrm{C}), 169.1(\mathrm{C})$; $\mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 246\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, found : $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 246.1696 . \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{NO}_{4}$ requires $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 246.1705$.

(2R,3S)-3-((S)-sec-Butyl)-4-oxo-oxetane-2-carboxylic acid

3

To a cooled solution of β-lactone $19(0.14 \mathrm{~g}, 0.59 \mathrm{mmol})$ in dichloromethane (4 ml) at $0{ }^{\circ} \mathrm{C}$, was added TFA dropwise (4 ml). The mixture was then stirred at this temperature for 15 hours, after which solvents were removed in vacuo, and the residue azeotroped from toluene (4 ml). After further concentration the mixture was then purified by column chromatography $\left(9 \mathrm{CHCl}_{3}: 1 \mathrm{MeOH}: 0.1 \mathrm{AcOH}\right.$ eluent), to afford acid $\mathbf{3}(0.92 \mathrm{~g}, 90 \%)$ as a clear oil. This material was used directly in the next step.

$N-\mathrm{CBz}$ belactosin A

20

To a cooled solution of β-lactone $3(36 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.30 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added distilled water (2.30 ml), then $\mathrm{HOBt}(0.114 \mathrm{~g}, 0.84 \mathrm{mmol})$ and EDCI (81 $\mathrm{mg}, 0.42 \mathrm{mmol})$. The biphasic mixture was then stirred rapidly at $0{ }^{\circ} \mathrm{C}$ for 10 min , followed by transfer of the organic phase dropwise to a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of amine salt $11(65 \mathrm{mg}, 0.14 \mathrm{mmol})$ and Hunig's base ($73 \mu \mathrm{l}, 0.42 \mathrm{mmol}$) in DMF (1 ml) (previously stirred for 10 min). This mixture was then further stirred at this temperature for 1 hour, followed by removal of all solvents at high vacuum. The crude material was directly purified by column chromatography $\left(9.5 \mathrm{CHCl}_{3}: 0.5\right.$ $\mathrm{MeOH}: 0.1 \mathrm{AcOH}$ eluent), then recrystallised from ethyl acetate/pentane to afford N CBz belactosin A $20(35 \mathrm{mg}, 50 \%)$ as a white foam; $[\alpha]^{23}{ }_{\mathrm{D}}-8.7$ (c 0.69, CHCl_{3});
$v_{\max } / \mathrm{cm}^{-1}$ (film) 3416, 2964, 1837, 1717, 1662, 1525, 1454, 1260, 1097, 909, 733; δ_{H} ($400 \mathrm{MHz}, \mathrm{d}_{6}$-acetone) $9.03\left(1 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{NHCH}\left(\mathrm{CO}_{2} \mathrm{H}\right)\right.$), $8.02(1 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{CH}_{2}\right) \mathrm{CHNHC}(\mathrm{O})\right), 7.38-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 6.41(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{CBzNH}), 5.06(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCH}_{2}\right), 4.81(1 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{NHC}(\mathrm{O}) \mathrm{C} H), 4.78-4.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}\left(\mathrm{CO}_{2} \mathrm{H}\right)\right)$, 4.434.36 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CBzNHCH}(\mathrm{Me})$), 3.70 (1 H , dd, J 8.0, 4.4, NHC(O)CHCH), 2.64-2.62 $(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{NHC}(\mathrm{O})), 2.36\left(1 \mathrm{H}\right.$, app dt, $\left.J 14.6,2.9, \mathrm{NHCH}\left(\mathrm{CO}_{2} \mathrm{H}\right) \mathrm{CH}_{2}\right), 1.98-1.92$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H\left(\mathrm{CH}_{3}\right) \mathrm{Et}\right), 1.69-1.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.39(3 \mathrm{H}, \mathrm{d}, J 7.0$, $\mathrm{CBzNHCH}\left(\mathrm{CH}_{3}\right)$), 1.32-1.18 (2H, m, $\left.\mathrm{NHCH}\left(\mathrm{CO}_{2} \mathrm{H}\right) \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.03(1 \mathrm{H}, \mathrm{d}, J$ 6.6, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Et}\right), 0.96-0.81\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}\left(\mathrm{CH}_{2}\right) \mathrm{CHNH},\left(\mathrm{CH}_{2}\right) \mathrm{CHNH}\right), 0.61-$ $0.56\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right) \mathrm{CHNH}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 174.3(\mathrm{C}), 173.8(\mathrm{C}), 171.1(\mathrm{C})$, 168.7 (C), 155.9 (C), 136.2 (C), 128.5 (CH), 128.1 (CH), 127.9 (CH), 70.2 (CH), 66.7 $\left(\mathrm{CH}_{2}\right), 62.9(\mathrm{CH}), 51.5(\mathrm{CH}), 50.4(\mathrm{CH}), 33.8(\mathrm{CH}), 33.4\left(\mathrm{CH}_{2}\right), 29.5(\mathrm{CH}), 26.7$ $\left(\mathrm{CH}_{2}\right), 19.1\left(\mathrm{CH}_{3}\right), 16.8(\mathrm{CH}), 16.3\left(\mathrm{CH}_{3}\right), 11.0\left(\mathrm{CH}_{3}\right), 10.2\left(\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB},+\mathrm{ve})$ $504[\mathrm{M}+\mathrm{H}]^{+}$, found : $[\mathrm{M}+\mathrm{H}]^{+}, 504.2345 . \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 504.2346$.

Belactosin $\mathbf{A}^{2 \mathrm{a}}$

> ${ }^{2 a}$ T. Mizukami, A. Asai, Y. Yamashita, R. Katahira, A. Hasegawa, K. Ochiai and S. Akinaga, Eur. Patent 768317, 1997.

1

To a mixture of $N-\mathrm{CBz}$ belactosin A $20(24 \mathrm{mg}, 0.048 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(24 \mathrm{mg})$, was added THF (1 ml) and the mixture was thoroughly purged with H_{2} until the solvent volume was approximately 0.30 ml . To this suspension was added formic acid (0.20 ml), and the mixture was placed under a balloon pressure of H_{2}, and stirred at room temperature for 2.5 hours. The suspension was then filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x}$ 2 ml), and concentrated in vacuo. Distilled water was added ($2 \times 1 \mathrm{ml}$), and the dissolved filtrate was again filtered then concentrated at high vacuum. The residue
was finally azeotroped with toluene $/ \mathrm{MeOH}(2: 1,3 \mathrm{ml})$, to afford pure belactosin A 1 $(17 \mathrm{mg}, 96 \%)$ as a white solid (m.p. $\left.186-187^{\circ} \mathrm{C}\right) ;[\alpha]^{21}{ }_{\mathrm{D}}+4.8\left(c 0.84, \mathrm{H}_{2} \mathrm{O}\right)$; $v_{\max } / \mathrm{cm}^{-}$ ${ }^{1}$ (film) 3252, 3074, 2964, 1832, 1674, 1598, 1397, 1205, 1139, 911, 801, 723; $\delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 4.92(1 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{NHC}(\mathrm{O}) \mathrm{C} H), 4.40\left(1 \mathrm{H}\right.$, app $\left.\mathrm{t}, J 5.7, \mathrm{NHCH}\left(\mathrm{CO}_{2} \mathrm{H}\right)\right)$, $4.20\left(1 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{H}_{2} \mathrm{NCH}(\mathrm{Me})\right), 3.90(1 \mathrm{H}, \mathrm{dd}, J 7.4,4.5, \mathrm{NHC}(\mathrm{O}) \mathrm{CHCH}), 2.58(1 \mathrm{H}$, app dt, $J 7.4,3.7, \mathrm{C} H \mathrm{NHC}(\mathrm{O})), 2.11-2.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Et}\right), 1.96(1 \mathrm{H}$, app dt, J 14.4, 6.0, $\left.\mathrm{NHCH}\left(\mathrm{CO}_{2} \mathrm{H}\right) \mathrm{CH}_{2}\right), 1.70\left(1 \mathrm{H}, \mathrm{ddd}, J 14.4,8.4,5.6, \mathrm{NHCH}\left(\mathrm{CO}_{2} \mathrm{H}\right) \mathrm{CH}_{2}\right)$, $1.63\left(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right)\right), 1.62-1.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.41-1.32(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.06\left(1 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Et}\right), 1.02-0.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{2}\right) \mathrm{CHNH}\right), 0.95$ (1 H , app t, $\left.J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.93-0.87\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right) \mathrm{CHNH}\right), 0.77(1 \mathrm{H}$, app dt, $J 7.4$, $\left.6.0,\left(\mathrm{CH}_{2}\right) \mathrm{CHNH}\right) ; \delta_{\mathrm{C}}\left(62 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 178.5(\mathrm{C}), 173.5(\mathrm{C}), 172.7(\mathrm{C}), 170.8(\mathrm{C}), 71.7$ $(\mathrm{CH}), 62.7(\mathrm{CH}), 55.7(\mathrm{CH}), 50.0(\mathrm{CH}), 34.5\left(\mathrm{CH}_{2}\right), 33.6(\mathrm{CH}), 29.2(\mathrm{CH}), 27.0$ $\left(\mathrm{CH}_{2}\right), 17.3\left(\mathrm{CH}_{3}\right), 16.7(\mathrm{CH}), 16.2\left(\mathrm{CH}_{3}\right), 12.0\left(\mathrm{CH}_{2}\right), 11.1\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB},+\mathrm{ve})$ $370[\mathrm{M}+\mathrm{H}]^{+}$, found : $[\mathrm{M}+\mathrm{H}]^{+}, 370.1981 . \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 370.1978$.

$\because 3$
○ o 1 N
जぃヒルハN N

00 HBL
$000^{\circ} 00 \angle V$
$002 \angle Z$ ㅇo
8६G＇ $\operatorname{SSN\Gamma }$

X-ray data for compound 19

Table 1. Crystal data and structure refinement for AA0305.

Identification code
Empirical formula
Formula weight
Temperature
Diffractometer, wavelength
Crystal system, space group
Unit cell dimensions

Volume, Z
Density (calculated)
Absorption coefficient F(000)
Crystal colour / morphology
Crystal size
θ range for data collection
Index ranges
Reflns collected / unique
Reflns observed [F>4б(F)]
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [F>4б(F)]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak, hole
Mean and maximum shift/error

AA0305
C12 H2O O4
228.28

293(2) K
Bruker P4, 1.54178 A
Orthorhombic, P2(1)2(1)2(1)
$a=6.0476(7) \AA \quad \alpha=90^{\circ}$
$\mathrm{b}=11.4445(7) \AA \quad \beta=90^{\circ}$
$c=19.263(3) \AA \quad \gamma=90^{\circ}$
1333.2(3) $\AA^{3}, 4$
$1.137 \mathrm{Mg} / \mathrm{m}^{3}$
$0.692 \mathrm{~mm}^{-1}$
496
Colourless needles
$1.00 \times 0.33 \times 0.10 \mathrm{~mm}^{3}$
4.59 to 64.99°
$0<=h<=7, \quad 0<=k<=13,-22<=1<=0$
$1342 / 1342$ [R(int) $=0.0000]$
1091
None
Full-matrix least-squares on F^{2}
1342 / $0 / 146$
1.059
$\mathrm{R} 1=0.0509, \mathrm{wR} 2=0.1389$
$\mathrm{R} 1+=0.0509, \mathrm{wR} 2+=0.1389$
R1- $=0.0511, w R 2-=0.1395$
$\mathrm{R} 1=0.0617, \mathrm{wR} 2=0.1479$
$\mathrm{x}+=0.0(6), \mathrm{x}-=* * * * * *$
$0.033(3)$
$0.144,-0.124 \mathrm{e}^{-3}$
0.000 and 0.000

Table 2. Bond lengths [Å] and angles [] for AA0305.

$\mathrm{O}(1)-\mathrm{C}(2)$	1.343(6)
O(1)-C (4)	1.461 (4)
$\mathrm{C}(2)-\mathrm{O}(2)$	1.189 (6)
C (2) - C (3)	1.513 (5)
$\mathrm{C}(3)-\mathrm{C}(5)$	1.518 (5)
C (3) - C (4)	1.538 (5)
C (4)-C (9)	1.522 (5)
C (5) - C (8)	1.527 (5)
C (5) - C (6)	1.532 (6)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.515 (6)
C (9) - - (9)	1.187 (4)
$\mathrm{C}(9)-\mathrm{O}(10)$	1.328 (4)
O (10)-C (11)	1.484 (4)
C (11)-C (12)	1.498 (6)
C (11)-C (14)	1.511 (6)
C (11) - C (13)	1.518 (5)
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(4)$	91.6(3)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{O}(1)$	126.8(4)
$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	137.5(5)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	95.8(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	119.3(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	82.5 (3)
$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(4)$	120.0(3)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(9)$	111.3(3)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	90.0 (3)
C (9) - C (4)-C (3)	114.1(3)
C (3) -C (5) -C (8)	109.2(3)
$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	109.1(3)
$\mathrm{C}(8)-\mathrm{C}(5)-\mathrm{C}(6)$	112.8(3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	114.2(4)
O (9)-C (9)-O(10)	127.6(4)
O(9)-C (9)-C (4)	123.5 (3)
O (10)-C (9)-C (4)	108.8(3)
$\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}(11)$	121.9(3)
O(10)-C (11)-C (12)	109.7(3)
$\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{C}(14)$	108.6(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)$	113.0(4)
$\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{C}(13)$	103.0(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	110.7(4)
C (14)-C (11)-C (13)	111.4(4)

Symmetry transformations used to generate equivalent atoms:

